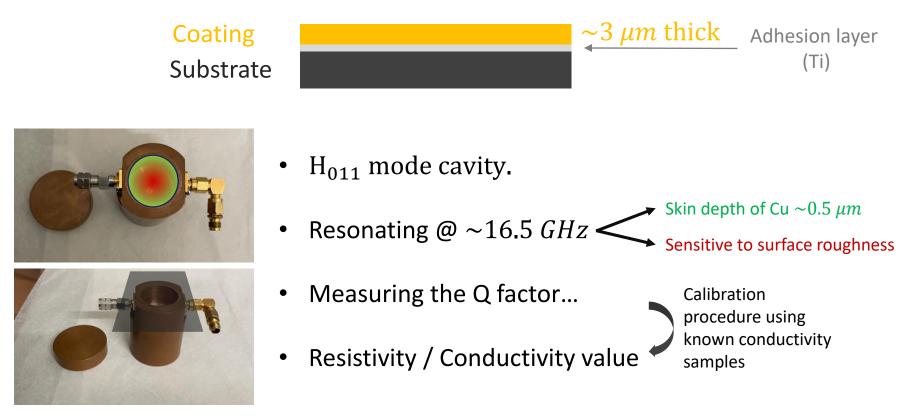
Cu coating conductivity measurements

WP2/WP5 meeting

C. Antuono, L. Sito, C. Accettura, N. Biancacci, L. Giacomel, A. Kurtulus, N. Mounet, B. Salvant, W. Vollenberg, C. Zannini.


- Measurement technique (H011 cavity)

 - Sputtering: DCMS vs HiPIMS
 Cleaning & Positioning → Impact of thickness
 Measurements on the blocks
- Conclusions and further studies

- Measurement technique (H011 cavity)
 - Sputtering: DCMS vs HiPIMS
 - Cleaning & Positioning \rightarrow Impact of thickness
 - Measurements on the blocks
- Conclusions and further studies

Measurement technique

• Measure the conductivity of coating only (i.e. the EM field must penetrate less than the coating thickness).

C. Accettura, et al. «Resistivity Characterization of Molybdenum-Coated Graphite-Based Substrates for High-Luminosity LHC Collimators». *Coatings*, vol. 10, fasc. 4, aprile 2020, p. 361. *DOI.org (Crossref)*, <u>https://doi.org/10.3390/coatings10040361</u>.

~ ~

Surface roughness impacts studied with semi-empirical approach (<u>Hammerstad model</u>)

$$\sigma_{eff} = \frac{\pi f \mu}{R_s^2}$$

$$R_s = \sqrt{\frac{\mu \omega}{2\sigma}} \left(1 + \frac{2}{\pi} \operatorname{arctg}(0.7\mu\omega\sigma R_Q^2) \right)$$
Root mean square value of the surface height variation

C. Zannini, Update of TL wall with inclusion of roughness (Here)

- Measurement technique (H011 cavity)
 - Sputtering: DCMS vs HiPIMS
 - Cleaning & Positioning → Impact of thickness
 - Measurements on the blocks
- Conclusions and further studies

DCMS VS HiPIMS

- Investigation on two magnetron sputtering techniques for producing the coatings (direct current and high-power impulse (70 and 130 V)).
- Tests done on both **Cu on Glass** and **Cu on Graphite**.

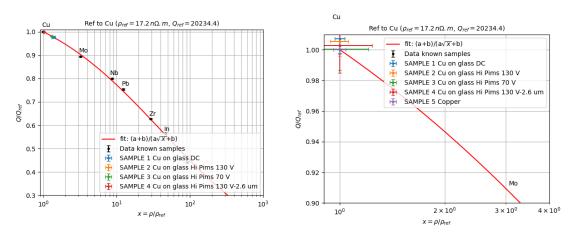
Cu on Graphite

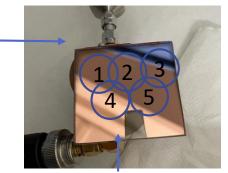
ID	Coating Procedure	$\sigma ~[MS/m]$ (Single Spot)	$\sigma~[MS/m]$ (Avg on surface)
1	DC - centre	18.36 +/- 0.61	16.87 +/- 4.00
2	DC – side	12.80 +/- 0.27	15.13 +/- 1.30
3	HiPIMS – centre	29.38 +/- 0.31	35.02 +/- 7.23
4	HiPIMS – side	39.10 +/- 6.64	34.47 +/- 5.54

• **HiPIMS 130 V** gives consistently a higher conductivity.

• Consistent with previous measurements of Mo on Graphite :

https://indico.cern.ch/event/883715/contributions/3723861/attachments/1995848/3329786/Colusm 28022020 NB.pdf


Bulk	Mo coating	DC	ECT	RF
MoGr	DCMS HIPIMS	$\begin{array}{c} 120 \pm 64 \\ 47 \pm 21 \end{array}$	$\begin{array}{r} 440\pm80\\ 68\pm4 \end{array}$	
C 11	DCMS	47 ± 21 410 ± 140		
Graphite	HIPIMS	47 ± 17	145 ± 2	112 ± 1


Resistivity values in $n\Omega \cdot m$

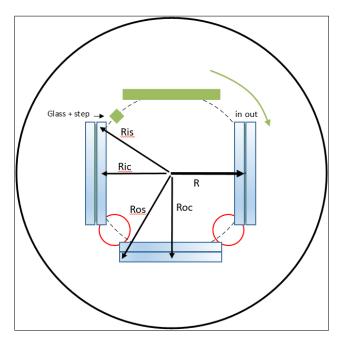
The case of Cu on Glass

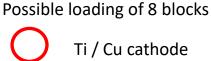
• When investigating DCMS vs HiPIMS \rightarrow 4 samples of Cu on Glass provided.

ID	Coating Procedure	$\sigma \ [MS/m]$ (Single Spot)	$\sigma \ [MS/m]$ (Avg. on Surface)
S1	DCMS	42.37 +/- 2.42	58.00 +/- 1.90
S2	HiPIMS 130 V	58.00 +/- 0.00	58.00 +/- 3.49
S3	HiPIMS 70 V	44.39 +/- 0.46	58.00 +/- 12.01
S4	HiPIMS 130 V-2.6 um	57.13 +/- 0.72	58.00 +/- 13.80

Five Q values each taken with a different position of the sample on the cavity.

Avg. conductivity above the calibration Cu sample
 Might be an indication that the roughness of the surface is playing a significant role (@16.5 GHz).

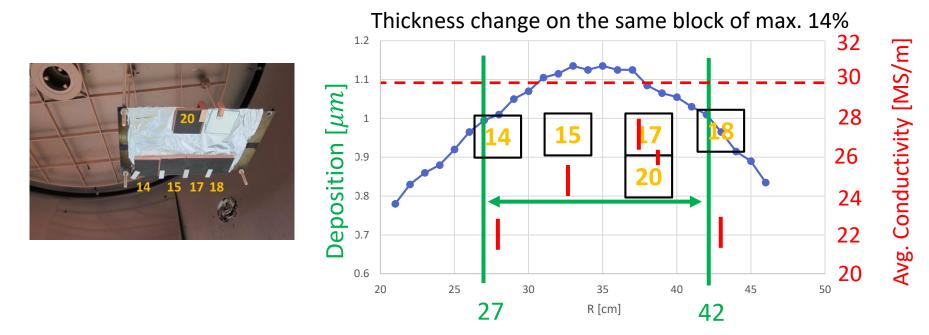

- Measurement technique (H011 cavity)
 - Sputtering: DCMS vs HiPIMS
 - Cleaning & Positioning \rightarrow Impact of thickness
 - Measurements on the blocks
- Conclusions and further studies


<u>Courtesy of</u> <u>Wil Vollenberg</u>

TE-VSC-SCC

Positioning

For **optimizing production**: loading of 8 blocks of 50 cm.

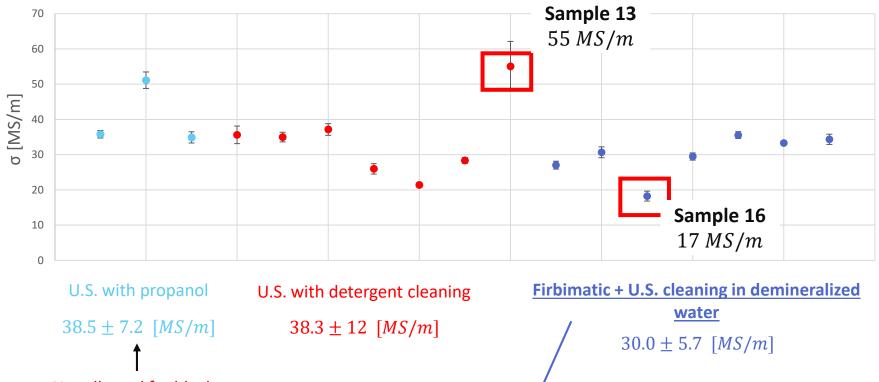


In this configuration, the radius change is $27 - 42 \ cm$

The **position** of the blocks in the oven **affects** the ultimate **coating thickness**.

Positioning

The **position** of the blocks in the oven **affects** the ultimate **<u>coating thickness</u>**.

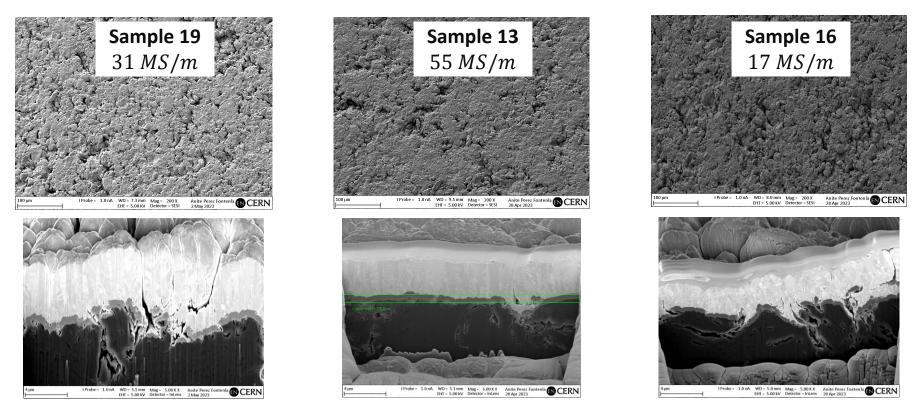

- Conductivity values are relatively **lower** → <u>Adhesion layer is Nb and not Ti</u>
- The conductivity seems to follow same trend as thickness
- However:
 - Coating thickness is lower (~2.5 μm) but still enough for the field to decay
 - The same trend is not shown in the measured blocks.

<u>Courtesy of</u> Wil Vollenberg

TE-VSC-SCC

Cleaning

Three cleaning procedures tested on 20 samples. Firbimatic chosen.



Not allowed for blocks

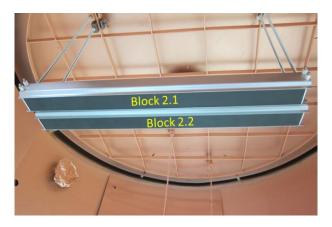
- Conductivity not significantly worse (see outliers)
 - Well established process
- Samples with different positions and angles with the target

Microscopy

More than 20 samples measured. High variability of the conductivity of the coating. Investigation on significant samples (close to avg, max and min).

- Variation between #19 and #13 could be related to local inhomogeneities.
- Cu coating on sample #16 has lower thickness and grain size smaller, less columnar.

<u>Courtesy of</u> Carlotta Accettura


EN-MME-EDS

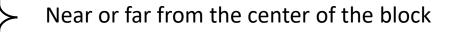
- Measurement technique (H011 cavity)
 - Sputtering: DCMS vs HiPIMS
 - Cleaning & Positioning \rightarrow Impact of thickness
 - Measurements on the blocks
- Conclusions and further studies

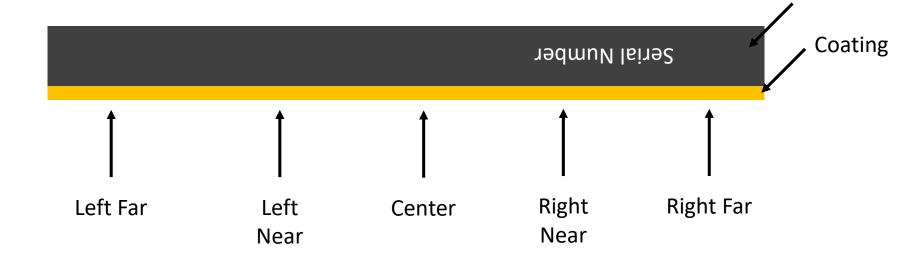
Blocks

Two Blocks measured before UHV tests:

- 2.1: outside
- 2.2: inside

- Blocks placed upside-down on the cavity: minimize moving the cabling.
- Effort to keep everything vacuum compliant.

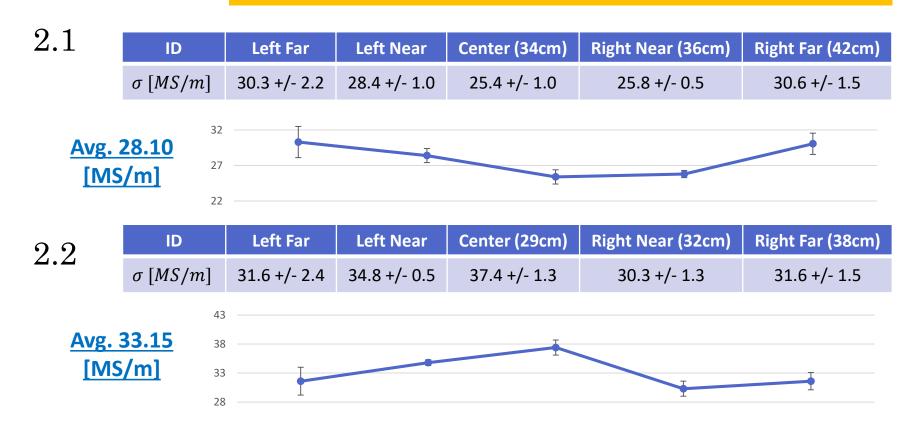



- 1. Difficult to measure the blocks without the <u>risk of damaging</u> them
- 2. <u>Different pressures</u> applied (the cavity is "closed" slightly differently)

Blocks

Each block measured in **<u>5 points</u>** (5 measurements taken for each point):

- Left far
- Left near
- Center
- Right near
- Right far



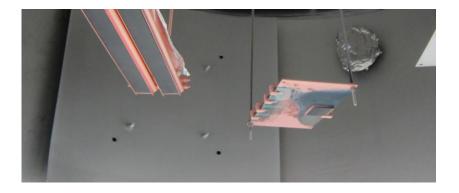
Substrate

Blocks

Serial Number

Opposite trends with the position (radius) in the oven.

This behavior might be explained by a surface roughness due to substrate inhomogeneities.


- Measurement technique (H011 cavity)
 - Sputtering: DCMS vs HiPIMS
 - Cleaning & Positioning \rightarrow Impact of thickness
 - Measurements on the blocks
- Conclusions and further studies

Summary

- Investigation on:
 - Sputtering type \rightarrow HiPIMS 130V
 - Position and cleaning \rightarrow Optimization of the production process
- Measurements of the first Cu coated blocks
 - Measured conductibility around $\sim 30 MS/m$ (with variability).
 - Still not fully clear the dependence with positioning.
 - Impact of surface roughness to further study, it may explain the discrepancies.
 - Due to measurement @ 16.5 GHz

Further work

- Measuring of the blocks after UHV treatment.
- Measuring of two more blocks (ready since 26/06):
 - Input from Wil: should the blocks be exposed to air?
- Measuring of glass samples \rightarrow Further study on the positioning in the oven

- Measuring at different frequency points → Further study on the surface roughness
 - Maybe loading the cavity with ferrite.

Thank you for the attention

Cu coating conductivity measurements

Chiara Antuono & Leonardo Sito (BE-ABP-CEI)