

Collimation cleaning performance with the latest materials

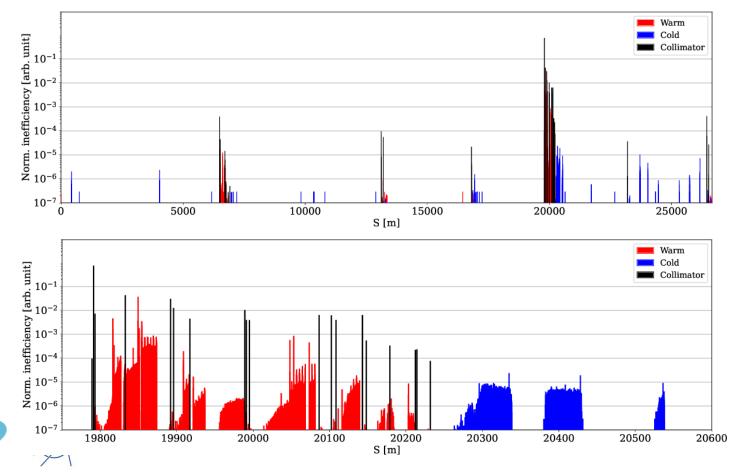
B. Lindström Thanks to R. Bruce, S. Redaelli

27th June 2023 - Special Joint HiLumi WP2/WP5 meeting

Introduction

- Previous studies assumed 18 out of 22 IR7 TCS in Mo-coated MoGr and IR1 / IR5 TCTs in CuCD
 - 8 TCS in MoGr installed in LS2
- Recent decisions:
 - Remaining TCS to be Cu-coated Gr
 - All TCTs in Inermet180
- Graphite lower density than MoGr (1.83 vs 2.54 g/cm^3)
 - \rightarrow more leakage!
- Inermet180 higher density than CuCD (18.0 vs 5.4 g/cm^3)
 - ► → more energy deposition!
- Collimation performance must be reevaluated:
 - IR7 leakage
 - TCT losses and power deposition
 - Experiment background

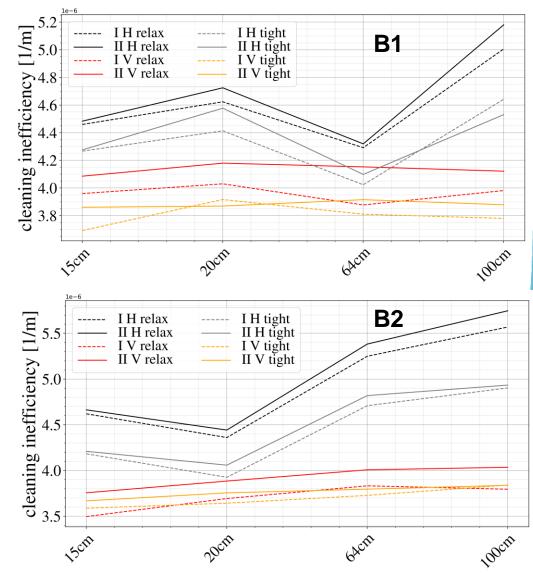
Collimator Settings ($\epsilon_n = 2.5 \mu m \cdot rad$)


	TDR Baseline (tight settings)		Low impedance (Relaxed Settings)		
	15 cm β*	20 cm β*	15 cm β*	20 cm β*	100 cm β*
TCP IR7	6.7	6.7	8.5	8.5	8.5
TCS IR7	9.1	9.1	10.1	10.1	10.1
TCLAIR7	12.7	12.7	14.0	13.7	13.7
TCLD IR7	16.6	16.6	n/a**	n/a**	n/a**
TCP IR3	17.7	17.7	17.7	17.7	17.7
TCSIR3	21.3	21.3	21.3	21.3	21.3
TCLAIR3	23.7	23.7	23.7	23.7	23.7
TCS IR6	10.1	10.1	11.1	11.1	11.1
TCDQ IR6	10.1	10.1	11.1	11.1	11.1
TCLIR1/5*	14.2	16.4	14.2	16.4	38 – 44
TCT IR1/5*	10.4	12.0	11.4	13.2	23 – 35
Prot. Aperture IR1/5	11.8	13.4	12.8	14.6	>24.4
TCT IR2	43.8	43.8	43.8	43.8	43.8
TCT IR8	17.7	17.7	17.7	17.7	17.7
TDIS	park	park	park	park	park
TCLDIR2	park	park	park	park	park

* gap in mm is set to final (15 cm) value and kept constant throughout squeeze ** n/a for runIV, status for runV to be confirmed

IL-LHC PROJEC

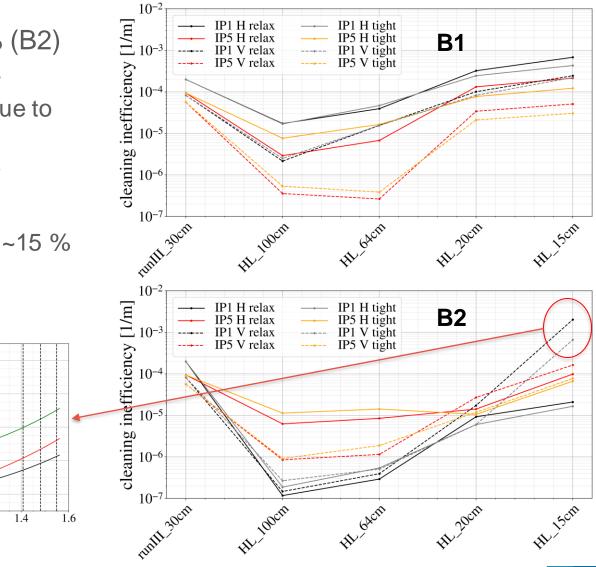
Simulations


- HLLHCV1.5 optics (15, 20, 64, 100 cm β^* // tight and relaxed settings)
- Sixtrack-FLUKA
- Betatron loss maps (B1/B2, H/V)
- Asynchronous beam dumps (Single-module prefire worst case)

DS losses (first cluster avg.)

- New material leads to more leakage (up to ~7 %)
- Worsening due to relaxed settings similar
- DS losses generally worse at larger β* due larger TCT gaps
- 64 and 20 cm β* have different optics, notably in IR6, affecting multi-turn cleaning

 V. Rodin* is currently simulating power deposition for new materials, tight / relaxed settings


TCT losses

- Up to 75 % (B1) and 200 % (B2) worse with relaxed settings
 - B2V IP1 particularly bad due to phase advance(!)
- Up to 55 % worse with new materials
 - nb in B2V IP1, increase is ~15 %

20cm relaxed

1.2

15cm tight 15cm relaxed

0.2

0.4

0.6

0.8

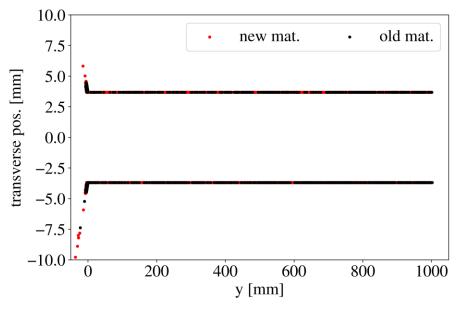
phase advance [rad]

1.0

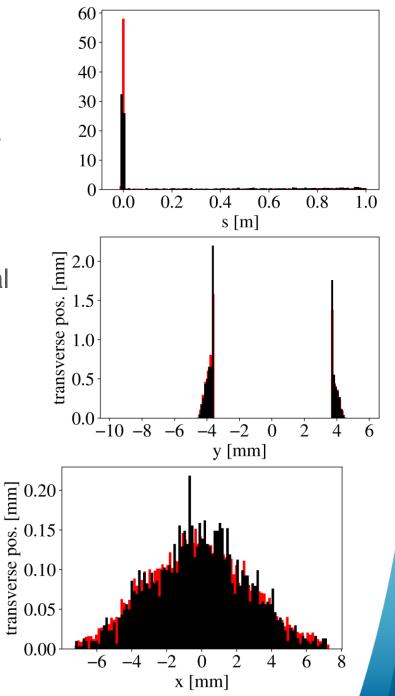
intercepted scattering angle $[\sigma]$ \approx 0 1 5 1 91 \approx 0 1

12

10

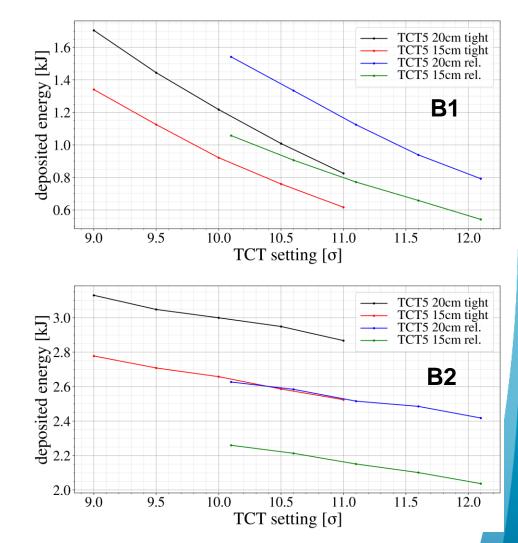

16

Impact distribution on TCT


Energy deposition factor ~2 more on Inermet180 than CuCD (1.05 vs 0.45 W) – assuming MoGr TCS*

Cu-coated Gr TCS gives more leakage to TCT, but distribution of impacts similar

- Power deposition can be scaled up by total number of impacts
- no need to redo FLUKA(?)



*M. Sabarte – LBS#114 https://indico.cern.ch/event/1195003

Asynchronous beam dump

- B1 factor ~2 better than B2 (B1 passes IR7)
- 20 cm worse than 15 cm
 - 20cm uses "tcdq4" optics with 8 % larger MKD beta functions
 - Indicates that optimizations can be done w.r.t. TCT losses
- New material gives less than 6 % increase of TCT losses
- Plastic deformation limit ~7.8 kJ
 - Not breached even for tighter than intended TCT settings

Conclusions and Outlook

- Relaxed settings:
 - Up to 75 % / 200 % worse TCT losses (B1 / B2)
 - Up to 7 % worse DS losses
- Cu-Gr + Inermet180 vs MoGr + CuCD:
 - Up to 55 % worse TCT losses
 - Up to 7 % worse DS losses
 - Up to 6 % worse TCT losses in asynch dumps
- Increased DS losses likely not a concern:
 - IR7 power deposition simulations with new materials ongoing
- TCT impact distributions with new materials similar – no FLUKA needed?
- B2V TCT losses need to be mitigated (phase advance)

