
HANDLING FIELDS IN
Juraj Smieško

CERN, 26 Jun 2023

KEY4HEP
CERN

FCC Detector Full Sim Working Meeting

1

https://key4hep.github.io/key4hep-doc/
https://home.cern/
https://indico.cern.ch/event/1299000/

Set of common software packages, tools,
and standards for different Detector
concepts
Common for FCC, CLIC/ILC, CEPC, EIC, …
Individual participants can mix and match
their stack
Main ingredients:

Data processing framework:
Event data model:
Detector description:
Software distribution:

KEY4HEP

Gaudi
EDM4hep

DD4hep
Spack

2

https://key4hep.github.io/key4hep-doc/
https://gaudi.web.cern.ch/gaudi/
https://edm4hep.web.cern.ch/
https://dd4hep.web.cern.ch/dd4hep/
https://spack.io/

EDM4HEP I.
Describes event data with the set of standard objects.

Specification in a single YAML file
Generated with the help of Podio

3

https://github.com/AIDASoft/podio

EDM4HEP II.
Example object:

Current version: v0.8.0
Objects can be extended / new created
Bi-weekly discussion:

#------------- CalorimeterHit
edm4hep::CalorimeterHit:
 Description: "Calorimeter hit"
 Author : "F.Gaede, DESY"
 Members:
 - uint64_t cellID //detector specific (geometrical) cell id.
 - float energy //energy of the hit in [GeV].
 - float energyError //error of the hit energy in [GeV].
 - float time //time of the hit in [ns].
 - edm4hep::Vector3f position //position of the hit in world coordinates in [mm].
 - int32_t type //type of hit. Mapping of integer types to names via coll

1
2
3
4
5
6
7
8
9
10
11

Indico

4

https://indico.cern.ch/category/11461/

FULLSIM IN KEY4HEP
DDsim

Part of the
Used to simulate CLD
Steering with Python script

k4SimGeant4

Set of Gaudi algorithms/tools
Used to simulate FCC LAr
Can be part of the larger steering

Both simulations output EDM4hep format, but there are some minor differences

DD4hep

5

https://dd4hep.web.cern.ch/

FIELDS IN GEANT4
Geant4 can propagate particle through magnetic, electric, electromagnetic and
gravitational fields
The tracking can be done to arbitrary accuracy
Equation of motion of the particle in the field is integrated usually by Runge-
Kutta method
There are several method implementations, suitable for different conditions
Inside one step, the path is broken up into small segments: chords
The magnetic field is managed by G4FieldManager
User needs to implement G4Field method:
GetFieldValue(const double Point[4], double *fieldArr)

6

FIELD IN DD4HEP COMPACT
FILE

Electric or magnetic field(s) described in field(s) tag
DD4hep creates combined field: OverlayedField
Constant Electric or Magnetic Fields are defined as follows:

Magnetic Dipoles are defined as follows:

Other notable field types: solenoid , FieldXYZ

<field name="MyMagnet" type="ConstantField" field="electric">
 <strength x="x-val" y="y-val" z="z-val">
</strength></field>

1
2
3

<field name="MyMagnet" type="DipoleMagnet" rmax="50*cm" zmin="0*cm" zmax=
 <dipole_coeff>1.0*tesla</dipole_coeff>
 <dipole_coeff>0.1*tesla/pow(cm,1)</dipole_coeff>
 <dipole_coeff>0.01*tesla/pow(cm,2)</dipole_coeff>
</field>

1
2
3
4
5

7

DDSIM
Simulation runs field(s) provided in the field tag

Constant, solenoid, 3D Fieldmap, ...
Integration parameters can be provided in the Python steering:

Example taken from

##
Configuration for the magnetic field (stepper)
##
SIM.field.delta_chord = 0.25*mm
SIM.field.delta_intersection = 0.001*mm
SIM.field.delta_one_step = 0.01*mm
SIM.field.eps_max = 0.001*mm
SIM.field.eps_min = 5e-05*mm
SIM.field.equation = "Mag_UsualEqRhs"
SIM.field.largest_step = 10.0*m
SIM.field.min_chord_step = 0.01*mm
SIM.field.stepper = "ClassicalRK4"

1
2
3
4
5
6
7
8
9
10
11
12

CLICPerformance

8

https://github.com/iLCSoft/CLICPerformance/blob/8049b232a582387e8cfc44f9faa3caf32cba062e/clicConfig/clic_steer.py#L75

K4SIMGEANT4
Simulation service SimG4Svc needs mag. field tool

Interface: ISimG4MagneticFieldTool
Three tools implemented:

SimG4ConstantMagneticFieldTool : Constant field in barrel
SimG4MagneticFieldFromMapTool : 2D Comsol map, 3D map from ROOT file
SimG4MagneticFieldTool (): Propagates field defined in compact file

Example of constant mag field:

Example taken from

PR #37

from Configurables import SimG4ConstantMagneticFieldTool
field = SimG4ConstantMagneticFieldTool("SimG4ConstantMagneticFieldTool")
field.FieldComponentZ = -2 * units.tesla
field.FieldOn = True
field.IntegratorStepper="ClassicalRK4"

1
2
3
4
5

k4RecCalorimeter

9

https://github.com/HEP-FCC/k4SimGeant4/pull/37/
https://github.com/HEP-FCC/k4RecCalorimeter/blob/main/RecFCCeeCalorimeter/tests/options/runCaloSim.py#L80

CONCLUSIONS
With both simulation methods can run with various fields
DD4hep offers ability to specify mag. field alongside the other detector "parts"
in the compact file
Tool approach of k4SimGeant4 allows to change the field in the steering
Remark: Field maps interface is not well defined

PR #37

10

https://github.com/HEP-FCC/k4SimGeant4/pull/37/

BACKUP

11

MAGFIELDSCANNER
With there is now possibility to probe your magnetic field with
MagFieldScanner

There are three probe types:
XYPlane: shows mag. field on the XY plane at any z
ZPlane: shows mag. field on the plane lying on z-axis at any phi (angle from x-axis)
Tube: shows mag. field on a tube with radius r

Example result: Mag. field: constant B_z = -2T, rMax = 150cm, abs(zMax) = 20m

PR #37

12

https://github.com/HEP-FCC/k4SimGeant4/pull/37/

