### $\Sigma$ (1385) ANALYSIS STATUS

<u>Enrico Fragiacomo</u>, Massimo Venaruzzo INFN and University Trieste

Resonances meeting - CERN - 04/03/2011

## Outlook

- How is the signal extracted
- Comparison of the extracted signal with the MCtruth (for simulated data)
- Results for real data
- Pt spectrum

## Side-band fit of the invariant mass

Simulated data from period LHC10d1/d4

 $1.6 < p_t < 1.8 \text{ GeV/c}$ 



## Combined BKG+SIGNAL fit



## Defining the background

Simulated data from period LHC10d1/d4

 $1.6 < p_t < 1.8 \text{ GeV/c}$ 



## Getting the signal

Simulated data from period LHC10d1/d4

 $1.6 < p_t < 1.8 \text{ GeV/c}$ 



# Comparing with the MC-true (1/2)

### Simulated data from period LHC10d1/d4

 $1.6 < p_t < 1.8 \text{ GeV/c}$ 



# Comparing with the MC-true (2/2)

#### Simulated data from period LHC10d1/d4

 $1.6 < p_t < 1.8 \text{ GeV/c}$ 



## Mass

### Simulated data from period LHC10d1/d4

### Mass of the $\Sigma^*$ vs pt



## Width

10

Simulated data from period LHC10d1/d4

### Width of the $\Sigma^*$ vs pt



2.195 / 8

## Yields

11

### Simulated data from period LHC10d1/d4





## Side-band fit of the invariant mass

Real data from period LHC10b/c

12

 $2.4 < p_t < 3.0 \text{ GeV/c}$ 



## Combined BKG+SIGNAL fit

### Real data from period LHC10b/c

 $2.4 < p_t < 3.0 \; GeV/c$ 



## Defining the background

Real data from period LHC10b/c

 $2.4 < p_t < 3.0 \text{ GeV/c}$ 



## Getting the signal

### Real data from period LHC10b/c

 $2.4 < p_t < 3.0 \text{ GeV/c}$ 



## Pt spectrum with fits

### Levy-Tsallis

 $n = (8.1 \pm 1.5)$ 

$$T = (276 \pm 28) \text{ MeV}$$

Chi2/NDF = 0.7/5

### Exp T = $(517 \pm 8)$ MeV Chi2/NDF = 5.5/6



## Conclusions

- Extraction procedure well defined
- Statistical errors dominates!
- For simulated data, the MC-true signal is within the statistical errors of the extracted signal
- Plan to analyze LHC10d period to increase statistics for real data



## Event and track selection

| Cut                           | Value                                               |
|-------------------------------|-----------------------------------------------------|
| AliPhysicsSelection           |                                                     |
| Reject kink daughters         |                                                     |
| ClusterRequirementITS         | SPD + Any SDD/SSD                                   |
| MaxChi2PerTPCcluster          | 4                                                   |
| Z vertex                      | -10 < z < 10                                        |
| A daughters TPC clusters      | > 70                                                |
| Bachelor TPC clusters         | > 70                                                |
| Chi2/nTPCclusters             | < 4                                                 |
| Λ mass                        | $1.110 \text{ GeV/c}^2 < m < 1.122 \text{ GeV/c}^2$ |
| Λ cos of point. Angle         | > 0.99                                              |
| Λ daughters DCA               | < 0.5 cm                                            |
| Primary Vertex - Λ DCA        | < 0.3 cm                                            |
| Primary Vertex - Bachelor DCA | < 0.05 cm                                           |

## Efficiency



### LHC10d1/d4 sim data MC-true signal mass and width

21

All points from MC-true signal. No signal extraction was performed!

Mass of the  $\Sigma^*$  vs pt



All points are within the statistical errors of the PDG value Statistical errors only

Width of the  $\Sigma^*$  vs pt



On average, three (five) MeV/c higher than the PDG value -> Resolution effect



 $1.0 < p_t < 1.2 \text{ GeV/c}$ 







1.44 Μ(Λπ) (GeV/c<sup>2</sup>)



### $1.6 < p_t < 1.8 \text{ GeV/c}$



### $1.8 < p_t < 2.0 \text{ GeV/c}$



 $2.0 < p_t < 2.4 \; GeV/c$ 



 $2.4 < p_t < 3.0 \text{ GeV/c}$ 



 $3.0 < p_t < 4.0 \text{ GeV/c}$ 



## Old extraction procedure

 $1.0 < p_t < 1.2 \text{ GeV/c}$ 

### Side-band only



## Old extraction procedure

 $2.0 < p_t < 2.4 \text{ GeV/c}$ 

### Side-band only



## Old extraction procedure

 $2.4 < p_t < 3.0 \text{ GeV/c}$ 

### Side-band only

