
ORNL is managed by UT–Battelle, LLC for the US Department of Energy

Celeritas for platform portable 
HEP comparison

Seth R Johnson 
Celeritas Code Lead 
Senior R&D Staff 
Scalable Engineering Applications

HEPiX meeting 
6 March, 2024

Celeritas core advisors: 

Tom Evans (ORNL), 
Philippe Canal (FNAL), 
Marcel Demarteau (ORNL), 
Paul Romano (ANL)

Celeritas core team: 

Elliott Biondo (ORNL), Julien Esseiva (LBNL), 
Seth R Johnson (ORNL), Soon Yung Jun (FNAL), 
Guilherme Lima (FNAL), Amanda Lund (ANL), Ben 
Morgan (U Warwick), Stefano Tognini (ORNL)



Celeritas project goal

• Accelerate scientific discovery by improving 
detector simulation throughput and energy efficiency 
for LHC production simulation

• Long term goal: as much work as possible on GPU

• Initial funding: focus on EM physics (but keep door open for more!)


• Multidisciplinary approach

• Research and develop novel algorithms for GPU-based Monte Carlo 

simulation in High Energy Physics

• Implement production-quality code for GPU simulation

• Integrate collaboratively into experiment frameworks

2

LHC beamline ©CERN

Nvidia A100 GPU @Nvidia

https://home.cern/resources/image/accelerators/lhc-images-gallery


Background 
Methods 
Results 

Conclusions

3



Software stack

• Every dependency is optional

▪︎ Needed for testing on oddball HPC systems

▪︎ Minimum useful simulation requires Geant4 

or ROOT for physics data input

▪︎ HEP detector geometry requires VecGeom


• In-house data model supports 
platform performance portability

▪︎ Most code is just C++ (<1% is CUDA/HIP)

▪︎ Data management layer abstracts memory 

location and transfer

▪︎ “Launcher” helper abstracts code execution

▪︎ Plan this year to add Intel via DPC++

4

Celeritas libraries

celer-sim 
HPC testing app

User apps Experiment 
frameworks

G4CUDA HIP VGOMP

Optional dependencies:

• nlohmann/json

• HepMC3

• googletest

Documentation:

• Doxygen

• Sphinx

• Breathe



High-level capabilities targeting LHC simulation

• Equivalent to G4EmStandardPhysics 
…using Urban MSC for high-E MSC; only γ, e± 

• Full-featured Geant4 detector 
geometries using VecGeom 1.x


• Runtime selectable processes, physics 
options, field definition


• Execution on CUDA (Nvidia), HIP* (AMD), 
and CPU devices

5

GPU-traced rasterization of CMS 2018

*VecGeom currently requires CUDA: 
ORANGE navigation required for AMD Source: Johnson, S.R. Geant4 Meeting 2023



Stepping loop on a GPU

6

Interact

Pre-step

Move to 
boundary

Along-step
LinearField …

Select 
discrete 

interaction

Process 
secondaries

Initialize 
new tracks

Post-step

…DiagnosticsHit 
processor

Process large batches of tracks 
through all kernels (103–106)

Using many small kernels improves 
extensibility

Interact User callbacks

Along-step

Initialize 
new tracks

Move to 
boundary

Select 
discrete 

interaction

Process 
secondaries

Pre-step

Topological sort: a loop over kernels

Source: Johnson, S.R. Geant4 R&D Summary 2023



Celeritas/Geant4 integration

• Imports EM physics selection, cross sections, parameters


• Converts geometry to VecGeom model without I/O


• Offloads EM tracks from Geant4 
(Via G4UserTrackingAction, G4VFastSimulationModel, or G4VTrackingManager)


• Scores hits to user “sensitive detectors” 
(Copies from GPU to CPU; reconstructs G4Hit, G4Step, G4Track; calls Hit)


• Builds against Geant4 10.5–11.2 with no patches required

7 Source: Johnson, S.R. Geant4 Meeting 2023



Background 
Methods 
Results 

Conclusions

8



ATLAS Tile Calorimeter performance

• Example of combined GPU/CPU comparison


• 1/4 of a Perlmutter (NERSC) GPU node 
16 cores of AMD EPYC, 1 Nvidia A100


• GPU speedup: 1.7× at full occupancy 
Using all CPU cores with a single GPU


• CPU-only speedup: 1.1–1.3× 

• Theoretical maximum speedup: 2.2–2.5×  
Instantly killing e-, e+, γ when born 


• One GPU is effective with many-CPU Geant4

9

64 primaries per event

User app



TestEm3 is 2.5× faster with ORANGE

Standalone EM performance

• 1300 × 10 GeV e-, 16 events


• ¼ Perlmutter node (NERSC) 
1 × Nvidia A100 GPU, ¼ × 64-core AMD EPYC 7763


• Celeritas GPU vs CPU 
CUDA (1 CPU thread) vs OpenMP (16 CPU threads)


• Key metrics favor GPU

▪︎ Capacity: 50–94% loss if GPUs are ignored

▪︎ Efficiency: up to 4× performance per watt

10

Problem definition
A “infinite” medium
B simple-cms
C idealized calorimeter
Z cms2018

Modifier
F +field
M +msc

Fa
st

er

More complex

ORANGE 
VecGeom

Previous versions of this slide used Summit 
which has slower CPU performance

celer-sim 
Performance testing app

Source: Johnson, S.R. Geant4 R&D Summary 2023



Figure of merit: throughput

• Cross-platform comparison 

• GPUs cannot be ignored if present


• AI/ML “revolution” guarantees 
more coprocessors at all scales

11

EM only, no SDs

Per-node stats for DOE supercomputers

Machine Arch Card TDP (W) Cores* Cards

Summit
CPU IBM Power9 190 ‡22 2
GPU Nvidia V100 250 80 6

Perlmutter
CPU AMD EPYC 7763 280 64 1
GPU Nvidia A100 250 108 4

Frontier
CPU AMD EPYC 7453 225 ‡64 1
GPU AMD MI250x 500 220 †4 *or SMs;  

†Each card has 2 GPUs 
‡One core reserved per GPUSource: Johnson, S.R. Geant4 R&D Summary 2023



Figure of merit: efficiency

• Estimated using reported 
Thermal Design Power (TDP) and 
Celeritas throughput

▪︎ Likely conservative based on nvidia-smi 

readings, since we use only a fraction of 
GPU hardware


▪︎ Really excited to work with your group 
on potential real-life power draw! 

• GPU consistently shows higher 
energy efficiency 🌱


• A100:EPYC price is ~4× 💸

12

EM only, no SDs



Background 
Methods 
Results 

Conclusions

13



Resources and installation

• Detailed installation, usage, development documentation

▪︎ User documentation: celeritas-project.github.io/celeritas/user/

▪︎ Doxygen: celeritas-project.github.io/celeritas/dev/

▪︎ Github: github.com/celeritas-project/celeritas

▪︎ Slack workspace, or AdePT/Celeritas Mattermost


• Installation

▪︎ Automatic CMake-based detection of available options

▪︎ Full spack environment definition and installable package

▪︎ Docker image with dependencies (used for CI)

▪︎ Rigorous CI matrix gives us confidence in build/test on new platforms

14

https://celeritas-project.github.io/celeritas/user/index.html
https://celeritas-project.github.io/celeritas/dev/index.html
https://github.com/celeritas-project/celeritas


Continuing work

• Concluding efforts funded by SciDAC V

▪︎ EM physics validation

▪︎ Integration with experiment frameworks


• Now officially funded by HEP-CCE (US DOE program)  
High Energy Physics - Center for Computational Excellence

▪︎ Optical physics for LZ, LEGEND, JUNO, etc.

▪︎ GPU-optimized, platform portable computational geometry for HEP

▪︎ Implementation and testing on Intel GPUs 
▪︎ Platform portability and energy efficiency are central to this program

15



Next steps

• Identify multiple testing hardware


• Configure software stack


• Determine test problems, targeted run time


• Perform cross-hardware efficiency comparisons?


• Incorporate into HEPScore benchmarking?

16



Acknowledgments

OLCF: This research used resources of the Oak Ridge Leadership Computing Facility at the Oak 
Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of 
Energy under Contract No. DE-AC05-00OR22725.


SciDAC: This material is based upon work supported by the U.S. Department of Energy, Office of 
Science, Office of Advanced Scientific Computing Research and Office of High Energy Physics, 
Scientific Discovery through Advanced Computing (SciDAC) program.


NERSC: This research used resources of the National Energy Research Scientific Computing Center 
(NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley 
National Laboratory, operated under Contract No. DE-AC02-05CH11231 using NERSC award HEP-
ERCAP-0023868.

17
https://github.com/celeritas-project/celeritas

Celeritas v0.4 code contributors: 
• Elliott Biondo (@elliottbiondo)

• Philippe Canal (@pcanal)

• Julien Esseiva (@esseivaju)

• Tom Evans (@tmdelellis)

• Hayden Hollenbeck (@hhollenb)

• Seth R Johnson (@sethrj)

• Soon Yung Jun (@whokion)

• Guilherme Lima (@mrguilima)

• Amanda Lund (@amandalund)

• Ben Morgan (@drbenmorgan)

• Stefano C Tognini (@stognini)

Past code contributors: 
• Doaa Deeb (@DoaaDeeb)

• Vincent R Pascuzzi (@vrpascuzzi)

• Paul Romano (@paulromano)

https://github.com/celeritas-project/celeritas

