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Celeritas project goal

• Accelerate scientific discovery by improving 
detector simulation throughput and energy efficiency 
for LHC production simulation

• Long term goal: as much work as possible on GPU

• Initial funding: focus on EM physics (but keep door open for more!)


• Multidisciplinary approach

• Research and develop novel algorithms for GPU-based Monte Carlo 

simulation in High Energy Physics

• Implement production-quality code for GPU simulation

• Integrate collaboratively into experiment frameworks
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Software stack

• Every dependency is optional

▪︎ Needed for testing on oddball HPC systems

▪︎ Minimum useful simulation requires Geant4 

or ROOT for physics data input

▪︎ HEP detector geometry requires VecGeom


• In-house data model supports 
platform performance portability

▪︎ Most code is just C++ (<1% is CUDA/HIP)

▪︎ Data management layer abstracts memory 

location and transfer

▪︎ “Launcher” helper abstracts code execution

▪︎ Plan this year to add Intel via DPC++
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Celeritas libraries

celer-sim 
HPC testing app

User apps Experiment 
frameworks

G4CUDA HIP VGOMP

Optional dependencies:

• nlohmann/json

• HepMC3

• googletest

Documentation:

• Doxygen

• Sphinx

• Breathe



High-level capabilities targeting LHC simulation

• Equivalent to G4EmStandardPhysics 
…using Urban MSC for high-E MSC; only γ, e± 

• Full-featured Geant4 detector 
geometries using VecGeom 1.x


• Runtime selectable processes, physics 
options, field definition


• Execution on CUDA (Nvidia), HIP* (AMD), 
and CPU devices
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GPU-traced rasterization of CMS 2018

*VecGeom currently requires CUDA: 
ORANGE navigation required for AMD Source: Johnson, S.R. Geant4 Meeting 2023



Stepping loop on a GPU
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Source: Johnson, S.R. Geant4 R&D Summary 2023



Celeritas/Geant4 integration

• Imports EM physics selection, cross sections, parameters


• Converts geometry to VecGeom model without I/O


• Offloads EM tracks from Geant4 
(Via G4UserTrackingAction, G4VFastSimulationModel, or G4VTrackingManager)


• Scores hits to user “sensitive detectors” 
(Copies from GPU to CPU; reconstructs G4Hit, G4Step, G4Track; calls Hit)


• Builds against Geant4 10.5–11.2 with no patches required

7 Source: Johnson, S.R. Geant4 Meeting 2023
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ATLAS Tile Calorimeter performance

• Example of combined GPU/CPU comparison


• 1/4 of a Perlmutter (NERSC) GPU node 
16 cores of AMD EPYC, 1 Nvidia A100


• GPU speedup: 1.7× at full occupancy 
Using all CPU cores with a single GPU


• CPU-only speedup: 1.1–1.3× 

• Theoretical maximum speedup: 2.2–2.5×  
Instantly killing e-, e+, γ when born 


• One GPU is effective with many-CPU Geant4
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64 primaries per event

User app



TestEm3 is 2.5× faster with ORANGE

Standalone EM performance

• 1300 × 10 GeV e-, 16 events


• ¼ Perlmutter node (NERSC) 
1 × Nvidia A100 GPU, ¼ × 64-core AMD EPYC 7763


• Celeritas GPU vs CPU 
CUDA (1 CPU thread) vs OpenMP (16 CPU threads)


• Key metrics favor GPU

▪︎ Capacity: 50–94% loss if GPUs are ignored

▪︎ Efficiency: up to 4× performance per watt
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Problem definition
A “infinite” medium
B simple-cms
C idealized calorimeter
Z cms2018

Modifier
F +field
M +msc

Fa
st

er

More complex

ORANGE 
VecGeom

Previous versions of this slide used Summit 
which has slower CPU performance

celer-sim 
Performance testing app

Source: Johnson, S.R. Geant4 R&D Summary 2023



Figure of merit: throughput

• Cross-platform comparison 

• GPUs cannot be ignored if present


• AI/ML “revolution” guarantees 
more coprocessors at all scales
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EM only, no SDs

Per-node stats for DOE supercomputers

Machine Arch Card TDP (W) Cores* Cards

Summit
CPU IBM Power9 190 ‡22 2
GPU Nvidia V100 250 80 6

Perlmutter
CPU AMD EPYC 7763 280 64 1
GPU Nvidia A100 250 108 4

Frontier
CPU AMD EPYC 7453 225 ‡64 1
GPU AMD MI250x 500 220 †4 *or SMs;  

†Each card has 2 GPUs 
‡One core reserved per GPUSource: Johnson, S.R. Geant4 R&D Summary 2023



Figure of merit: efficiency

• Estimated using reported 
Thermal Design Power (TDP) and 
Celeritas throughput

▪︎ Likely conservative based on nvidia-smi 

readings, since we use only a fraction of 
GPU hardware


▪︎ Really excited to work with your group 
on potential real-life power draw! 

• GPU consistently shows higher 
energy efficiency 🌱


• A100:EPYC price is ~4× 💸
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EM only, no SDs
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Resources and installation

• Detailed installation, usage, development documentation

▪︎ User documentation: celeritas-project.github.io/celeritas/user/

▪︎ Doxygen: celeritas-project.github.io/celeritas/dev/

▪︎ Github: github.com/celeritas-project/celeritas

▪︎ Slack workspace, or AdePT/Celeritas Mattermost


• Installation

▪︎ Automatic CMake-based detection of available options

▪︎ Full spack environment definition and installable package

▪︎ Docker image with dependencies (used for CI)

▪︎ Rigorous CI matrix gives us confidence in build/test on new platforms
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https://celeritas-project.github.io/celeritas/user/index.html
https://celeritas-project.github.io/celeritas/dev/index.html
https://github.com/celeritas-project/celeritas


Continuing work

• Concluding efforts funded by SciDAC V

▪︎ EM physics validation

▪︎ Integration with experiment frameworks


• Now officially funded by HEP-CCE (US DOE program)  
High Energy Physics - Center for Computational Excellence

▪︎ Optical physics for LZ, LEGEND, JUNO, etc.

▪︎ GPU-optimized, platform portable computational geometry for HEP

▪︎ Implementation and testing on Intel GPUs 
▪︎ Platform portability and energy efficiency are central to this program
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Next steps

• Identify multiple testing hardware


• Configure software stack


• Determine test problems, targeted run time


• Perform cross-hardware efficiency comparisons?


• Incorporate into HEPScore benchmarking?
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