HS23 from CentOS7 to AlmaLinux9

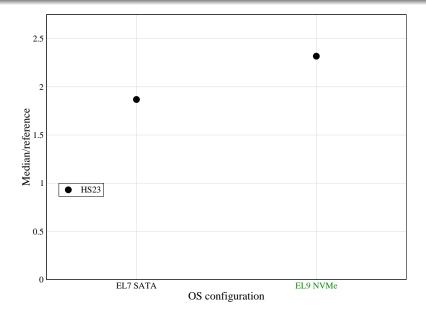
Evgeny Stambulchik

Weizmann Institute of Science, Rehovot 7610001, Israel

HEPiX Benchmarking WG June 19, 2024

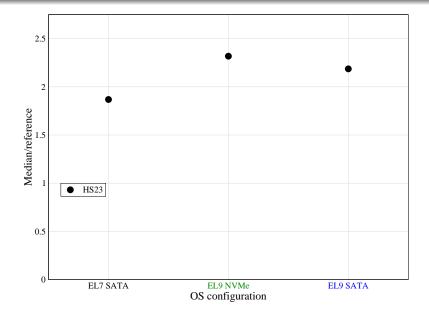
- In preparation to transition from CentOS7 to AlmaLinux9, benchmarks on a new hardware were run & compared between the OS'es
- Initial results were both surprising and confusing (the details are in the GGUS ticket 166741)

Two identical systems:

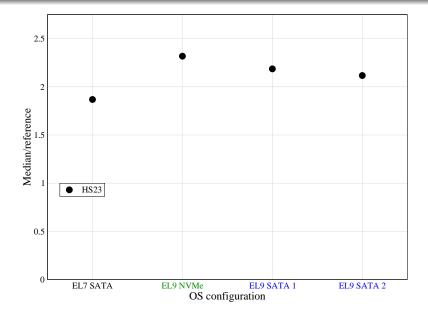

- Motherboard: ASUS ESC4000-E11
- CPU: 2 × Xeon Gold 6530 @ 2.10 GHz (64 HW cores in total)
- Hyperthreading: enabled
- RAM: 512 GB
- Disk: 512 GB SATA and/or 2 TB NVMe¹
- GPU: 4 \times NVidia A6000 (not used for the benchmarking)

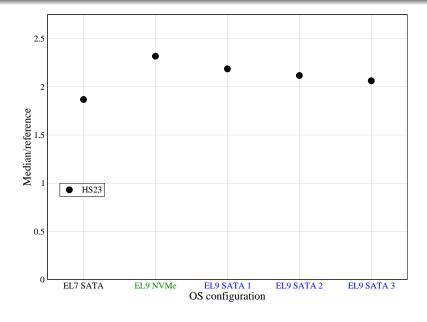
¹Not supported by CentOS7

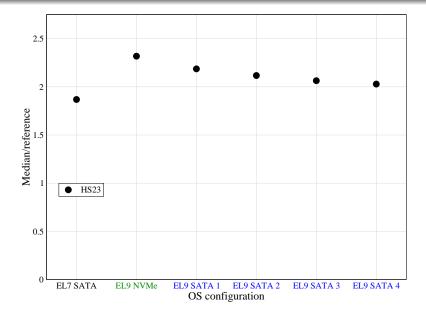
	CentOS7	AlmaLinux9
Kernel	3.10	5.14 PREEMPT_DYNAMIC ²
Local disk	SATA SSD	NVMe or SATA SSD
File system	Primary/Ext4	LVM/XFS

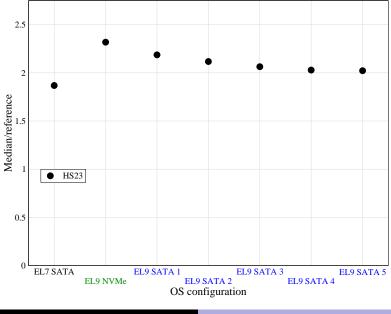

²dmesg | grep Preempt

Dynamic Preempt: voluntary

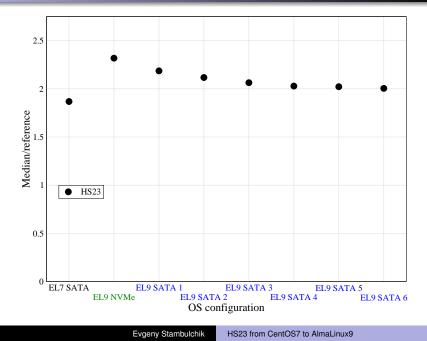

A 25% increase; could it be due to the disk (SATA vs NVMe)?

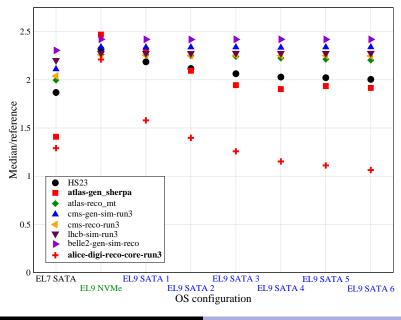

- A 25% increase; could it be due to the disk (SATA vs NVMe)?
- To find out, AlmaLinux9 was installed on the same type of SATA disk.



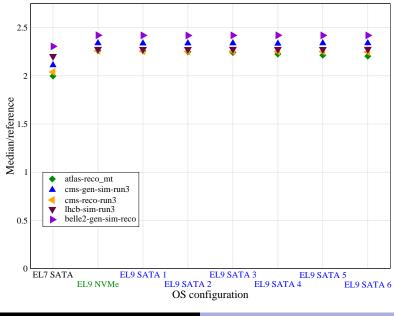

 Some of the difference can definitely be attributed to the storage; but not all

- Some of the difference can definitely be attributed to the storage; but not all
- Furthermore, a strange phnomenon was observed...

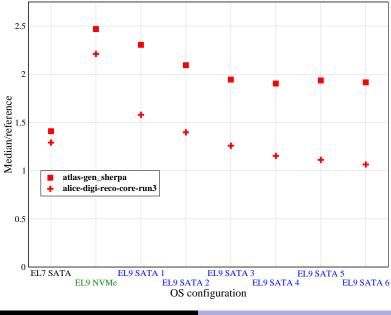




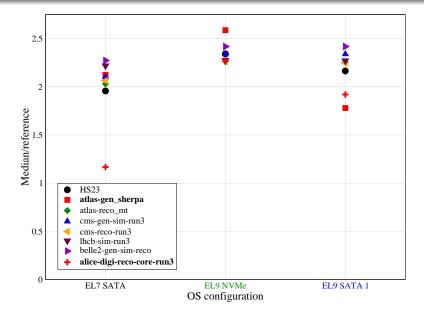
Evgeny Stambulchik HS23 from CentOS7 to AlmaLinux9

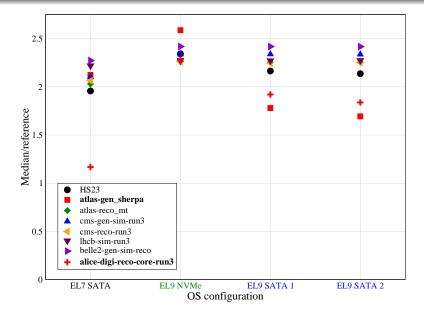


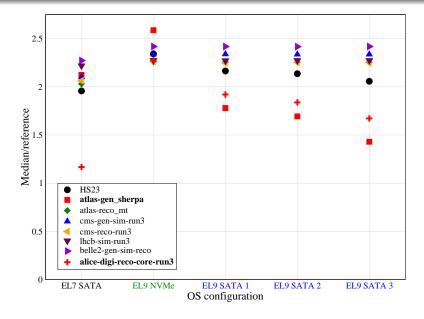
- An obvious degradation of the results with time
- Let's have a look at the separate benchmark workloads:



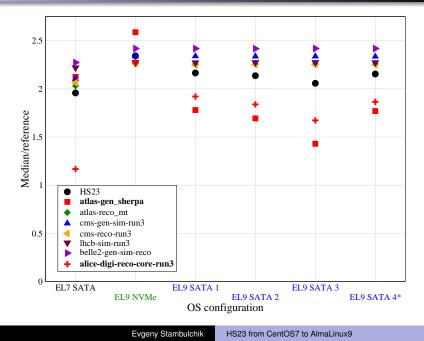
 Most workload scores remain constant; furthermore, no difference between EL9 SATA and NVMe

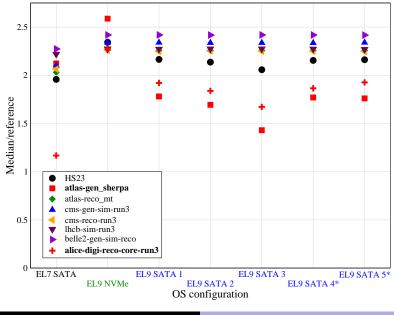



- Most workload scores remain constant; furthermore, no difference between EL9 SATA and NVMe
- But two atlas-gen_sherpa and alice-digi-reco-core-run3 – show the degradation clearly


- Most workload scores remain constant; furthermore, no difference between EL9 SATA and NVMe
- But two atlas-gen_sherpa and alice-digi-reco-core-run3 – show the degradation clearly
- These two workloads also show the most striking difference between EL7 and EL9

 It was suggested to use an improved configuration (-b hepscore-new-wl), using hep-score v2.0rc8

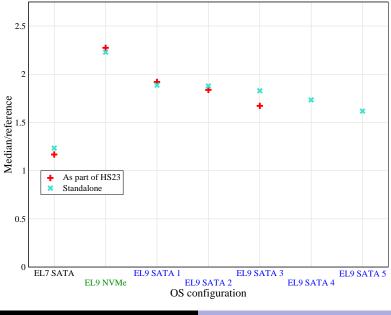




- It was suggested to use an improved configuration (-b hepscore-new-wl), using hep-score v2.0rc8
- The same qualitative picture with atlas-gen_sherpa and alice-digi-reco-core-run3 degrading from run to run

- It was suggested to use an improved configuration (-b hepscore-new-wl), using hep-score v2.0rc8
- The same qualitative picture with atlas-gen_sherpa and alice-digi-reco-core-run3 degrading from run to run
- fstrim to the rescue!

- It was suggested to use an improved configuration (-b hepscore-new-wl), using hep-score v2.0rc8
- The same qualitative picture with atlas-gen_sherpa and alice-digi-reco-core-run3 degrading from run to run
- fstrim to the rescue!
- fstrim makes no visible changes in the case of EL9 NVMe and very minor ones (~1%) for EL7 SATA


- It was suggested to use an improved configuration (-b hepscore-new-wl), using hep-score v2.0rc8
- The same qualitative picture with atlas-gen_sherpa and alice-digi-reco-core-run3 degrading from run to run
- fstrim to the rescue!
- fstrim makes no visible changes in the case of EL9 NVMe and very minor ones (~1%) for EL7 SATA
- The fstrim service/timer is enabled by default in neither of these OS'es. Why? Debian-based distros have it running once a week by default. It would suffice for EL7 SATA – but not for EL9 SATA!

- It was suggested to use an improved configuration (-b hepscore-new-wl), using hep-score v2.0rc8
- The same qualitative picture with atlas-gen_sherpa and alice-digi-reco-core-run3 degrading from run to run
- fstrim to the rescue!
- fstrim makes no visible changes in the case of EL9 NVMe and very minor ones (~1%) for EL7 SATA
- The fstrim service/timer is enabled by default in neither of these OS'es. Why? Debian-based distros have it running once a week by default. It would suffice for EL7 SATA – but not for EL9 SATA!
- Under EL9, fstrim only queues the TRIM operations

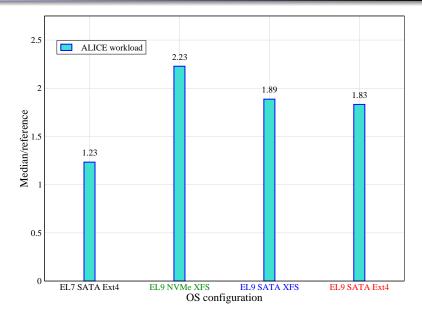
Focus on the ALICE workload

The ALICE workload was run as a single workload

Focus on the ALICE workload

- The ALICE workload was run as a single workload
- The degradation rate is twice slower ⇒ it is a *cumulative* effect of I/O of all workloads

- The ALICE workload was run as a single workload
- The degradation rate is twice slower \Rightarrow it is a *cumulative* effect of I/O of all workloads
- The arithmetics of fstrim is confusing (even with its "queued" mode of operation in mind):


- The ALICE workload was run as a single workload
- The degradation rate is twice slower \Rightarrow it is a *cumulative* effect of I/O of all workloads
- The arithmetics of fstrim is confusing (even with its "queued" mode of operation in mind):
 - According to iostat, each (triple) run of alice-digi-reco-core-run3 writes ~160 GB of data to \$TMPDIR

- The ALICE workload was run as a single workload
- The degradation rate is twice slower \Rightarrow it is a *cumulative* effect of I/O of all workloads
- The arithmetics of fstrim is confusing (even with its "queued" mode of operation in mind):
 - According to iostat, each (triple) run of alice-digi-reco-core-run3 writes ~160 GB of data to \$TMPDIR
 - But fstrim -v shows the same \sim 390 GB (nearly the size of the file system) before and after one or five consecutive runs!

- The ALICE workload was run as a single workload
- The degradation rate is twice slower \Rightarrow it is a *cumulative* effect of I/O of all workloads
- The arithmetics of fstrim is confusing (even with its "queued" mode of operation in mind):
 - According to iostat, each (triple) run of alice-digi-reco-core-run3 writes ~160 GB of data to \$TMPDIR
 - But fstrim -v shows the same ~390 GB (nearly the size of the file system) before and after one or five consecutive runs!
 - And yet it helps...

- The ALICE workload was also run directly (i.e., without the hep-score wrapper) with the prmon option to gather detailed stats
- The results have not been analyzed yet (but the data files are available in the GGUS ticket)

(Un)importance of file system

Conclusions

- Most of the HS23 workloads show a stable ~10% improvement in EL9 vs EL7, no matter which disk/file system is used. It is surprising given that the benchmarks run in an EL7 containerized environment.
- Two workloads atlas-gen_sherpa and alice-digi-reco-core-run3 — are highly sensitive to the storage type used.
- It has implications both for the benchmark calibration and performance of the real workloads.
- Running fstrim periodically is crucial in the case of the EL9 SATA setup.
- These findings and their generality need to be further investigated.

Thank you for your attention!

The help of Alexey Konvisher with the hardware setup is highly appreciated.

Evgeny Stambulchik HS23 from CentOS7 to AlmaLinux9

Extra material

Script used for running HS23

#!/bin/sh

```
HEPSCORE=${HOME}/.local/bin/hep-score
HEPRESDIR=${HOME}/hs23/results
SING_HOME=/cvmfs/atlas.cern.ch/repo/containers/sw/singularity/x86_64-el7/3.8.6
# Respect definition from the batch system
if test -z $TMPDIR
then
WORKDIR='mktemp -d'
else
WORKDIR=$TMPDIR
fi
```

```
# A Lustre volume with prefetched singularity images
CACHEDIR=${HOME}/storage/singularity
```

```
mkdir -p ${WORKDIR}
mkdir -p ${WORKDIR}/singularity
mkdir -p ${CACHEDIR}
mkdir -p ${HEPRESDIR}
```

```
export PATH=${SING_HOME}/bin:$PATH
export SINGULARITY_CACHEDIR=${CACHEDIR}
export SINGULARITY_TMPDIR=${WORKDIR}/singularity
```

```
outfile=${HEPRESDIR}/${HOSTNAME}.ref.txt
logfile=${HEPRESDIR}/${HOSTNAME}.log
```

```
${HEPSCORE} -b hepscore-new-wl -v -o ${outfile} ${WORKDIR} > ${logfile} 2>&1
```

Script used for running ALICE workload directly

#!/bin/sh

```
HEPSCORE=${HOME}/.local/bin/hep-score
HEPRESDIR=${HOME}/hs23/results
SING HOME=/cvmfs/atlas.cern.ch/repo/containers/sw/singularity/x86 64-el7/3.8.6
SING IMAGE=oras://gitlab-registry.cern.ch/hep-benchmarks/hep-workloads-sif/alice-digi-reco-co
# Respect definition from the batch system
if test -z $TMPDIR
then
   WORKDIR='mktemp -d'
else
    WORKDIR=$TMPDIR
fi
# A Lustre volume with prefetched singularity images
CACHEDIR=${HOME}/storage/singularity
mkdir -p ${WORKDIR}
mkdir -p ${WORKDIR}/tmp
mkdir -p ${WORKDIR}/results
mkdir -p ${WORKDIR}/singularity
mkdir -p ${CACHEDIR}
mkdir -p ${HEPRESDIR}
```

export PATH=\${SING_HOME}/bin:\$PATH
export SINGULARITY_CACHEDIR=\${CACHEDIR}
export SINGULARITY_TMPDIR=\${WORKDIR}/singularity

```
singularity run -i -c -e \

-B ${WORKDIR}/results :/results \

-B ${WORKDIR}/tmp :/tmp \

-B ${WORKDIR}/tmp :/var/tmp \

${SING_IMAGE} -W --threads 4 --events 3 --prmon
```