

Bernhard Holzer CERN-ABP

A Short Introduction ... LOL

In the end and after all ...: We try to explain the structure of "hadronic matter" in the universe. In short words: "What is going on, up there ???"

Eine der wichtigsten Fragen in der Physik des 20ten Jahrhunderts:

Woraus besteht Goldfolie ?

naja, a bissi mehr wissenschaftlich: woraus besteht Materie ??

oder noch besser ...

wie sind positive und negative Ladungen in der Materie verteilt ???

B. J. Holzer, CERN

$$N(\theta) = \frac{N_i n t Z^2 e^4}{(8\pi\varepsilon_0)^2 r^2 K^2} * \frac{1}{\sin^4(\theta/2)}$$

Rutherford Scattering, 1911 Using radioactive particle sources: *a*-particles of some MeV energy

B. J. Holzer, CERN

1.) Electrostatic Machines: The Cockcroft-Walton Generator

1928: Encouraged by Rutherford Cockcroft and Walton start the design & construction of a high voltage generator to accelerate a proton beam

1932: First particle beam (protons) produced for nuclear reactions: splitting of Li-nuclei with a proton beam of 400 keV

Technically: rectifier circuit, built of capacitors and diodes (Greinacher)

Problem: DC Voltage can only be used once

6U

Problems: * Particle energy limited by high voltage discharges* high voltage can only be applied once per particle or twice ?B. J. Holzer, CERNGerman Teachers

The "Tandem principle":

Apply the accelerating voltage twice by working with negative ions (e.g. H⁻) and stripping the electrons in the centre of the structure

Example for such a "steam engine": 12 MV-Tandem van de Graaff Accelerator at MPI Heidelberg

Gretchen Frage (J.W. Goethe, Faust)

Fallen die Dinger eigentlich runter?

$$l_{vdG} = 30m$$

 $v \approx 10 \% c \approx 3 * 10^7 m/s$
 $\Delta t = 1 \mu s$

Free Fall in Vacuum:

 $s = \frac{1}{2}gt^2$ $s = \frac{1}{2} \cdot 10\frac{m}{s^2} \cdot (1\mu s)^2$ $s = 5 \cdot 10^{-12}m = 5pm$

3.) The first RF-Accelerator: "Linac"

1928, Wideroe: how can the acceleration voltage be applied several times to the particle beam

schematic Layout:

Energy gained after n acceleration gaps

$$E_n = n \cdot q \cdot U_0 \quad \sin \psi_s$$

n number of gaps between the drift tubes **q** charge of the particle U_0 Peak voltage of the RF System Ψ_s synchronous phase of the particle

* acceleration of the proton in the first gap
 * voltage has to be "flipped" to get the right sign in the second gap → RF voltage
 → shield the particle in drift tubes during the negative half wave of the RF voltage
 B. J. Holzer, CERN
 German Teachers

Wideroe-Structure: the drift tubes

shielding of the particles during the negative half wave of the RF

idealer Zeitpunkt 90 grad -> sin(90°)=1

Time span of the negative half wave:

Length of the Drift Tube:

Kinetic Energy of the Particles

$$l_n = v_n \cdot \frac{\tau_{rf}}{2}$$

 $\tau_{rf}/2$

$$E_n = \frac{1}{2}mv^2 \qquad \longrightarrow \qquad v_n = \sqrt{2E_n/m}$$

mit der kin. Energie

 $l_n = v_n \cdot \frac{\tau_{rf}}{2} = \frac{1}{f_{rf}} \cdot \sqrt{\frac{n \cdot q \cdot U_0 \cdot \sin\psi_s}{2m}}$

$$E_n = n \cdot q \cdot U_0 \cdot \sin \psi_s$$

ergibt das

$$v_n = \sqrt{\frac{2 \cdot n \cdot q \cdot U_0 \cdot \sin(\psi_s)}{m}}$$

Bauplan fuer einen Wideroe Beschleuniger:

B. J. Holzer, CERN

German Teachers

9

Und so sieht das innen drinnen aus:

Achtung !!! valid for non relativistic particles ...

Energy: ~ 20 MeV per Nucleon

 $\beta = V/C \approx 0.04 \dots 0.6$, Particles: Protons/Ions

Zahlenbeispiel:		<u>Linac III:</u>	$E_{total} = 988 \ MeV$
total energy	$E_{total} = E_{kin} + m_0 c^2$		$m_0 c^2 = 938 \ MeV$
kinetic energy	$E_{kin} = E_{total} - m_0 c^2$		$E_{kin} = 50 \ MeV$
Ruhe-Energie	$E_0 = m_0 c^2$		
man erinnert sich:	$m \rightarrow \gamma \cdot m_0$	$\gamma = \frac{E_{ges}}{E_0} =$	$\frac{988}{938} = 1.05$

-> im klassischen Bereich

B. J. Holzer, CERN

3.) The Cyclotron: (Livingston / Lawrence ~1930)

Problem: Linacs werden bei v=c sehr schnell sehr lanngggg.

—> Man erhaelt ne kompakte (d.h. billigere) Maschine, wenn man den Orbit der Teilchen aufwickelt.

Idea: Apply a magnetic field: B = *const*

Lorentzforce

$$F = q \cdot v \cdot B$$

geladene Teilchen in Bewegung werden im Magnetfeld abgelenkt.

Kreisbahn-Bedingung: Zentrifugalkraft wird durch die entgegengesetzte Lorentz-Kraft aufgehoben.

 $F_{Lorentz} = F_{zentrifugal}$ $q \cdot v \cdot B = \frac{mv^{2}}{r}$ B. J. Holzer, CERN $B \cdot R = \frac{mv}{q} \longrightarrow B \cdot R = \frac{p}{q}$ German Teachers

3.) The Cyclotron: (Livingston / Lawrence ~1930)

revolution frequency

$$\omega_{revol} = \frac{v}{r} = \frac{q}{m} \cdot B = const!!!$$

Die Umlaufs-frequenz im Cyclotron ist konstant. Wir lassen eine gleich-grosse konstante RF frequenz auf die Teilchen los und die Kiste funktioniert.

 $\omega_{rf} = \omega_{revolution}$ oder $\omega_{rf} = h \cdot \omega_{revolution}$

increasing radius for increasing momentum → *Spiral Trajectory*

Problem: Albert !!!

 $m \rightarrow \gamma \cdot m_0$

Synchro-Cyclotron Korrektur der RF Frequenz

B. J. Holzer, CERN

Fixed target experiments:

HARP Detector, CERN

high event rate easy track identification asymmetric detector limited energy reach

fixed target event $p + W \rightarrow xxxxx^{\perp}$

Collider experiments: E=mc²

B. J. Holzer, CERN

low event rate (luminosity) challenging track identification symmetric detector $E_{lab} = E_{cm}$

 Z_0 boson discovery at the UA2 experiment (CERN). The Z_0 boson decays into a e+e- pair, shown as white dashed lines. *German Teachers*

II.)

A Bit of Theory The big storage rings: "Synchrotrons"

1.) Introduction and Basic Ideas

", ... in the end and after all it should be a kind of circular machine" → need transverse deflecting force

Lorentz force
$$\vec{F} = q^* (\vec{E} + \vec{v} \times \vec{B})$$

typical velocity in high energy machines:

$$v \approx c \approx 3*10^8 \, \frac{m}{s}$$

Example:

B. J. Holzer, CERN

$$B = 1T \quad \Rightarrow \quad F = q * 3 * 10^8 \frac{m}{s} * 1 \frac{Vs}{m^2}$$
$$F = q * 300 \frac{MV}{m}$$

equivalent E electrical field: German Teachers Technical limit for electrical fields:

$$E \le 1 \frac{MV}{m}$$

16

Ein Speicherring besteht aus Magneten, Magneten und Magneten

und ein wenig Vakuum-Kammern, Strahldiagnose, und RF Systemen

V

ρ

S

The ideal circular orbit

... das hatten wir schon.

circular coordinate system

condition for circular orbit:

Lorentz force

centrifugal force

B. J. Holzer, CERN

$$F_L = e v B$$

 $\boldsymbol{F_{centr}} = \frac{\gamma \, \boldsymbol{m}_0 \, \boldsymbol{v}^2}{\rho}$

$$\frac{\gamma \ m_0 \ v^2}{\rho} = e \ v E$$

German Teachers

$$\frac{p}{e} = B \rho$$

B ρ = "beam rigidity"
... und jetzt isses sogar relativistisch korrekt.

The Magnetic Guide Field

field map of a storage ring dipole magnet

Dipole erzeugen ein konstantes (!) Magnetfeld

Ablenkradius:

$$\rho = \frac{p}{e B} = \frac{7000 \cdot 10^9 \ eV}{3 \cdot 10^8 m/s * 8Vs/m^2}$$

nota bene: fuer ultra relativistische Teilchen gilt

 $C_0 = 2\pi \cdot \rho$

 $p \approx \frac{E}{c}$

 $\rho = 2.8 \ km$

ds

α

B. J. Holzer, CERN

Ablenkwinkel eines Dipols:

Anzahl Dipol Magnete:

 $\alpha_{dipol} = \frac{ds}{\rho} = \frac{\int B \, ds}{B \, \rho} \approx \frac{B \cdot l_{dipol}}{B \, \rho}$ $N_{dipole} = \frac{2\pi}{\alpha_{dipol}} = 1232 \, !!!$

Umfang des Speicherrings:

German reacners

Bending Angle

"wieviele Dipole sollen's denn sein ???

Winkel im Kreis-Segment

$$\alpha = \frac{ds}{\rho} = \frac{B \cdot ds}{B \cdot \rho}$$

fuer den ganzen Dipol $B l_{eff} = \int B ds$

Und alle Dipole zusammen muessen nen Vollkreis ergeben, also 2π

und damit braucht's "n" Dipole mit Feldstaerke "B" und Laenge "l"

$$n \cdot B \cdot l_{dipol} = 2\pi \cdot \frac{p}{q}$$

B. J. Holzer, CERN

2.) Focusing Forces: Hook's law

Federpendel im Physik Buch

there is a restoring force, proportional to the elongation x:

$$F = m * a = -const * x$$

$$F = m * \frac{d^2x}{dt^2} = -\operatorname{const} * x$$

Hook's Federgesetz: F = -k * x

Integration liefert uns eine cos- artige Lösung oder eine sinus artige

 $x(t) = A \cdot cos(\omega t)$ $x(t) = B \cdot sin(\omega t)$

oder eine Kombination aus beiden

 $x_{allg}(t) = A \cdot cos(\omega t) + B \cdot sin(\omega t)$

Vorteil:

harmonische Schwingungen sind sehr (!!) stabil, haben eine wohldefinierte Frequenz sind in der Natur (i.e. Physik) weit verbreitet

B. J. Holzer, CERN

2.) Focusing Forces: Quadrupole Fields

Apply this concept to magnetic forces: we need a Lorentz force that rises as a function of the distance to the design orbit

 $F(x) = q^* v^* B(x)$

Dipoles: Create a constant field

 $B_y = const$

Quadrupoles: Create a linear increasing magnetic field:

 $B_y(x) = g \cdot x, \quad B_x(y) = g \cdot y$

B. J. Holzer, CERN

Focusing forces and particle trajectories:

normalise magnet fields to momentum (remember: $B*\rho = p/q$)

Dipole Magnet

Quadrupole Magnet

 $\frac{B}{p/q} = \frac{B}{B\rho} = \frac{1}{\rho}$

 $k := \frac{g}{p \, / \, q}$

Achtung: um Energie unabhängige Gleichungen zu erhalten teilen wir die Felder durch "p"

"normalised bending strength"

$$\rho = \frac{B}{p/e}$$

1

3.) The Equation of Motion:

$$\frac{B(x)}{p/e} = \frac{1}{\rho} + k x + \frac{1}{2!}m x^2 + \frac{1}{3!}m x^3 + \dots$$

only terms linear in x, y taken into account dipole fields quadrupole fields

Separate Function Machines:

Split the magnets and optimise them according to their job:

*

man sieht nur dipole und quads \rightarrow linear

bending, focusing etc

Example: heavy ion storage ring TSR

The Equation of Motion:

* Equation for the horizontal motion:

ŷ

$$x'' + x \cdot \left(\frac{1}{\rho^2} + k\right) = 0$$

x = particle amplitude x'= angle of particle trajectory (wrt ideal path line)

$$x'' = -x \cdot \left(\frac{1}{\rho^2} + k\right)$$
$$\underbrace{x'' = -K \cdot x}$$

Hook's Gesetz fuer Speicherringe

... es gibt da nur ein kleines Problem:

B. J. Holzer, CERN

In der vertikalen Ebene drehen sich die Magnetfeld-Linien um

Equation for the vertical motion:

*

$$\frac{1}{\rho^2} = 0$$
 no dipoles ... in general ...

 $k \leftrightarrow -k$ quadrupole field changes sign

$$y'' - k \cdot y = 0$$

... und Teilchen, die in der horizontalen Ebene fokussiert werden, werden im gleichen Atemzug in der vertikalen Ebene aus der Maschine befördert.

B. J. Holzer, CERN

B. J. Holzer, CERN

4.) Solution of Trajectory Equations

Define ... hor. plane: $K = 1/\rho^2 + k$... vert. Plane: K = -k

$$\boldsymbol{x}'' + \boldsymbol{K} \ \boldsymbol{x} = \boldsymbol{0}$$

Differential Equation of harmonic oscillator ... with spring constant K

Ansatz: Hor. Focusing Quadrupole K > 0:

$$x(s) = x_0 \cdot \cos(\sqrt{|K|}s) + x_0' \cdot \frac{1}{\sqrt{|K|}} \sin(\sqrt{|K|}s)$$
$$x'(s) = -x_0 \cdot \sqrt{|K|} \cdot \sin(\sqrt{|K|}s) + x_0' \cdot \cos(\sqrt{|K|}s)$$

... da ist wieder unsere Kuckucksuhr.

For convenience expressed in matrix formalism:

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s1} = M_{foc} * \begin{pmatrix} x \\ x' \end{pmatrix}_{s0}$$

B. J. Holzer, CERN

hor. defocusing quadrupole:

$$x'' - K x = 0$$

Ansatz: Remember from school

 $x(s) = a_1 \cdot \cosh(\omega s) + a_2 \cdot \sinh(\omega s)$

 $M_{defoc} = \begin{pmatrix} \cosh \sqrt{|K|}l & \frac{1}{\sqrt{|K|}} \sinh \sqrt{|K|}l \\ \sqrt{|K|} \sinh \sqrt{|K|}l & \cosh \sqrt{|K|}l \end{pmatrix}$

... zur Erinnerung: hyperbolische Funktionen führen leicht zu Panik Attacken !

$$M_{defoc} = \begin{pmatrix} \cosh \sqrt{|K|}l & \frac{1}{\sqrt{|K|}} \sinh \sqrt{|K|}l \\ \sqrt{|K|} \sinh \sqrt{|K|}l & \cosh \sqrt{|K|}l \end{pmatrix}$$

$$f(s) = sin(s)$$
 $f(s) = cos(s)$
 $f(s) = sinh(s)$ $f(s) = cosh(s)$

Ansatz für die Teilchenbewegung im defokusierenden Fall:

 $x(s) = a_1 \cdot \cosh(\omega s) + a_2 \cdot \sinh(\omega s)$

Transformation through a system of lattice elements

combine the single element solutions by multiplication of the matrices

in each accelerator element the particle trajectory corresponds to the movement of a harmonic oscillator "

LHC Operation: Beam Commissioning

The transverse focusing fields create a harmonic oscillation of the particles with a well defined "Eigenfrequency" which is called tune

First turn steering "by sector:"

POINT 5 CMS

POINT 6

POINT 8

I HCh

POINT 7

Betatron

Cleaning

POINT 4

POINT 2 Alice

POINT 3

Momentum

Cleaning

"Once more unto the breach, dear friends, once more" (W. Shakespeare, Henry 5)

"Do they actually drop ?"

Answer: No

Question: what will happen, if the particle performs a second turn ?

Die zwei wichtigsten Formeln fuer uns ...

 $E = mc^2$

die Energie unserer Strahlen kann in **Masse** neuer Teilchen umgewandelt werden.

Teilchen verhalten sich wie Wellen mit einer wohl definierten Wellenlaenge; $h = 4.1 \cdot 10^{-21}$ MeV s

Lichtspektrum:

Lichtmikroskope haben damit eine Auflösung von etwas besser als µm

LHC:

$$E = p \cdot c \quad \rightarrow \quad p = \frac{E}{c} \qquad p = \frac{7 \cdot 10^{12} \, eV}{3 \cdot 10^8 \, m/s}$$

$$\lambda = \frac{h}{p} = 4.1 \cdot 10^{-21} MeVs \cdot \frac{3*10^8 m/s}{7 \cdot 10^{12} eV}$$

 $\lambda \approx 2 \cdot 10^{-19} \, m$

ATLAS event display: Higgs => two electrons & two muons

$$E = m_0 c^2 = m_{e1} + m_{e2} + m_{\mu 1} + m_{\mu 2} = 125.4 \text{ GeV}$$

B. J. Holzer, CERN

The only chance we have: compress the transverse beam size ... at the IP

LHC typical \rightarrow 16 μ m

5.) Luminosity

Ereignis Rate: "Physik" pro Sekunde

 $R = L \cdot \Sigma_{react}$

Example: Luminosity run at LHC

$\sigma_x = \sigma_y = 16 \mu m$	Strahlgröße am IP
$f_0 = 11.245 \ kHz$	Umlaufs-Frequenz
$n_b = 2808$	Zahl der Bunche
$N_p = 1.2 \cdot 10^{11}$	Teilchen in einem Bunch
$I_p = 584 mA$	Strahlstrom

$$L = 1.0 * 10^{34} / cm^2 s$$

B. J. Holzer, CERN

 $L = \frac{1}{4\pi} \cdot N_{p1} \cdot \frac{N_{p2}}{\sigma_x \sigma_y} \cdot$ $(n_b \cdot f_0)$

Emittance of the Particle Ensemble:

single particle trajectories, $N \approx 10^{11}$ per bunch

Gauß Particle Distribution:

 $\rho(\mathbf{x}) = \frac{N \cdot \mathbf{e}}{\sqrt{2\pi}\sigma_{\mathbf{x}}} \cdot \mathbf{e}^{-\frac{1}{2}\frac{\mathbf{x}^2}{\sigma_{\mathbf{x}}^2}}$

particle at distance 1 σ from centre \leftrightarrow 68.3 % of all beam particles

LHC: *Strahlgroesse* = $\sigma \approx 0.3$ mm

aperture requirements: $r_0 = 17 * \sigma$

beam sizes in the order of my cat's hair !! B. J. Holzer, CERN

The LHC Mini-Beta-Insertions

Extrem starke Fokussierung (in beiden Ebenen) für beide Strahlen, um die Trajektorien der 10¹¹ Teilchen auf micro Meter zu komprimieren.

B. J. Holzer, CERN

... clearly there is another problem !!!

... unfortunately ... in general high energy detectors that are installed in colliders are a little bit bigger than a few centimeters ...

The Acceleration

Install an RF accelerating structure in the ring:

The Acceleration & "Phase Focusing" △p/p≠0 below transition

ideal particle•particle with $\Delta p/p > 0$ •particle with $\Delta p/p < 0$ •slower

Focussing effect in the longitudinal direction keeping the particles close together ... forming a "bunch"

B. J. Holzer, CERN

... so sorry, here we need help from Albert:

was passiert, wenn wir die Teilchen immer "schneller" machen ?

$$\gamma = \frac{E_{total}}{m_0 c^2} = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \longrightarrow \frac{v}{c} = \sqrt{1 - \frac{mc^2}{E_{total}^2}}$$

die Teilchen werden irgendwann nicht mehr schneller !

B. J. Holzer, CERN

The Acceleration above transition

Focussing effect in the longitudinal direction keeping the particles close together ... forming a "bunch"

... and how do we accelerate now ??? with the dipole magnets !

B. J. Holzer, CERN

The RF system: IR4 S344 S45 ADT **Q**6 D4005D3IP4 ' 🗛 CS 🕌 DFBM ACS DEBM ADTH ACN DEB ACN B2 ΔPW 420 mm 194 mm R 17,08,09,010 NB.0F.00 14,491 92 973 250.415

Nb on Cu cavities @4.5 K (=LEP2) Beam pipe diam.=300mm Bunch length (4σ) 1.06 ns Energy spread (2σ) 10-3 0.22 Synchr. rad. loss/turn keV 7 Synchr. rad. power kW 3.6 RF frequency MHz 400 Harmonic number 35640 RF voltage/beam MV 16 485 keV Energy gain/turn Synchrotron frequency Hz 23.0

B. J. Holzer, CERN

1.) Where are we ? * Standard Model of HEP * Higgs discovery

What's next ???

Dark Matter & Dark Energy Physics beyond the Standard Model

Hubble Deep Field HST • PRC96-01a · ST Scl OPO · January 15, 1996 · R. Williams (ST Scl), NASA

PUZ

Η

What's next ??? Dark Matter

The outer region of galaxies rotate faster than expected from visible matter

$$\frac{m \cdot v^2}{r} = \frac{m_1 \cdot M_2 \cdot G}{r^2}$$
$$v_{circ} = \sqrt{\frac{M_2(r) \cdot G}{r}}$$

Dark matter would explain this Other observations exist ... (grav. lens effects) but all through gravity

What is it?

(One explanation is super-symmetry) B. J. Holzer, CERN German Teachers Corbelli & Salucci (2000); Bergstrom (2000)

Reconstruction of Dark Matter distribution based on observations

Budget: Dark Matter: 26 % Dark Energy: 70 % Anything else (including us) 4 %

> court. Michael S. Turner Kavli Institute for Cosmological Physics The University of Chicago

Considered Future High Energy Frontier Colliders

Circular colliders: FCC (Future Circular Collider ... Euro-Circol) FCC-hh: 100 TeV proton-proton cm energy FCC-ee: Potential intermediate step 90-350 GeV lepton collider

Linear colliders

 ILC (International Linear Collider): e+e-, 500 GeV cms energy, Japan considers hosting project
 CLIC (Compact Linear Collider): e+e-, 380GeV - 3TeV cms energy, CERN hosts collaboration

Others Plasma acceleration Muon collider, has been supported in the US but effort has stopped Photon-photon collider

B. J. Holzer, CERN

The Next Generation Ring Collider

