MSSM $H^{\pm} \rightarrow \chi_i^0 \chi_j^{\pm}$ Searches in the 3 Lepton + Missing Transverse Energy

Caleb Lampen
On behalf of the ATLAS Collaboration

DPF Brown University August 10, 2011

Acknowledgements

University of Arizona

- Elliott Cheu
- Prolay Mal

Brookhaven National Laboratory

Ketevi Assamagan

Instituto de Fisica de Cantabria

Sven Heinmeier

Plus entire ATLAS SUSY multilepton group!

Supersymmetry and the Higgs Boson

Supersymmetry (SUSY)

- One of the most popular theories describing physics beyond the standard model.
- Solves hierarchy problem of standard model.
- Predicts several new particles, including dark matter candidates.

Minimal Supersymmetric Standard Model (MSSM)

- Minimum extension to standard model that provides supersymmetry.
- Used as primary benchmark scenario for most current experimental SUSY searches.

Higgs boson under MSSM

- MSSM requires at least two Higgs doublets, resulting in five physical Higgs bosons.
 - 3 Neutral (h, H, and A)
 - 2 Charged (H⁺ and H⁻)
- Discovery of a charged Higgs boson would be a clear sign of physics beyond the standard model.

H[±] Searches

Standard H[±] Searches

- Well exercised search channels suppressed in "LHC Wedge Region"
- $H^{\pm} \rightarrow tb$ suppressed by low $H^{\pm}tb$ coupling near $tan\beta \sim 7$.
- $H^{\pm} \rightarrow \tau \nu$ suppressed at $M_{H^{+}} > M_{top}$ for low tan β .

ATLAS H[±] 5-σ Discovery Sensitivity

*CERN-OPEN-2008-020 (arXiv:0901.0512)

tan β = ratio of vacuum expectation values of Higgs doublets.

An Alternative Channel

- $H^{\pm} \rightarrow \chi_i^{\pm} \chi_j^{0} \rightarrow 3$ lepton and missing transverse energy.
 - o Chargino (χ_i^{\pm}) and neutralino (χ_i^{0}) are SUSY particles.
 - Decay less sensitive to H[±]tb coupling.
 - \circ Effective for $M_{H+} > M_{top}$
 - Provides extra sensitivity in LHC Wedge Region.
 - See early study: Hansen C et al. (arXiv:hep-ph/0504216)

H+ Production

Example Production

- Production Mechanisms
 - \circ gg, qq \rightarrow tbH $^{\pm}$
 - \circ gb \rightarrow tH $^{\pm}$
 - Note tbH+ vertex, suppressed in LHC wedge region. Our enhancement over H⁺ → tb comes from decay
- Only considered SM → H⁺ production
- We only consider heavy H⁺ (heavier than top).
 - •Light H⁺ was considered, but the required χ_i^{\pm} and χ_j^{0} masses to keep decay open are excluded by current experimental constraints.

H+ Decay

- Target decay chain is $H^{\pm} \rightarrow \chi_i^{\pm} \chi_j^{0}$
- Final State Signature:
 - Trileptons
 - All combinations of muons and electrons
 - Missing Transverse Energy (MET)
 - LSP + \vee
 - Jets
 - Associated t and b quarks
- Important backgrounds include:
 - O Direct $\chi_i^{\pm} \chi_j^{0}$ production.
 - o tt
 - Diboson
 - Z + Jets

Muon Spectrometer ($|\eta|$ < 2.7): air-core toroids with gas based muon chambers. Muon trigger and measurement with momentum resolution < 10% up to E_{μ} ~ 1 TeV

Inner Detector ($|\eta|$ < 2.7, B=2T)

Si Pixels, Si strips, TRT $\sigma/pT \sim 3.8x10\text{--}4\ pT\ (GeV) \oplus 0.015$

Hadron Calorimetery ($|\eta| < 4.9$):

Fe/scintillator Tiles (central), Cu-LAr (endcap) E-Resolution: $\sigma/\sqrt{E} \sim 50\% / \sqrt{E} \oplus 0.03$ Cu/W-LAr (FWD) E-Resolution: $\sigma/\sqrt{E} \sim 90\% / \sqrt{E} \oplus 0.03$

SUSY Scenario Monte Carlo

- Chose SUSY parameters inspired by m_h –max scenario, expanding out in the SUSY parameters μ and M_2 .
- H⁺ signal produced using Pythia + Matchig
- Full ATLAS GEANT4 simulation for $m_{H+} = 400$ GeV, then scanned through mass spectrum using fast simulation.
- Although several SUSY points tested, all results shown here use following parameter values, giving a 7 TeV production cross section of 1.16 fb.

• Tan
$$\beta = 7$$

$$\circ$$
 μ = 200 GeV

$$M_2 = 310 \text{ GeV}$$

$$_{\circ}$$
 M_{SUSY} = 1000 GeV, At=Ab= 2000 GeV

$$_{\circ}$$
 m_t^{pole} = 172.4 GeV

$$_{\circ}$$
 m_b = 4.25 GeV

$$_{\circ}$$
 M_{stau} = 250 GeV

$$_{\circ}$$
 M_{slep} = 150 GeV

$$_{\circ}$$
 $A_{tau} = A_{lep} = 0$

Analysis Details

- Cuts-based analysis developed in collaboration with SUSY multilepton group.
 - Topology very similar between H⁺ and SUSY for 3-lepton events.
 - Cutflow optimized on SUSY benchmark points.
 - Effective for H⁺.
- Presenting Study on 2010 data: 34 pb⁻¹
 - Analysis in development on 2011 data, but not ready at this time.

Event Selection

Event Cuts

- 1. At least 3 leptons with $p_T \ge 20, 20, and 10 \text{ GeV}$.
- 2. No dilepton pair invariant mass within 5 GeV of Z mass.
- 3. Two Jets with $p_T \ge 50 \text{ GeV}$
- 4. MET \geq 50 GeV

Vastly reduces SM background

Removes most remaining Z boson events

SM typically has softer jets than SUSY

High MET from LSP

Event Selection

- Good agreement between MC and Data.
- No data events pass Jet p_T cut.
- tt is only substantial standard model background after all cuts.

Significance vs Event Selection

 $S_N = \frac{S}{\sqrt{B + \sigma_B^2}}$, gives very low S_N (significance) at 34 pb⁻¹

- S is number of signal events
- B is number of standard model background events

Limit Setting

- Set limit on H⁺ cross section × branching ratio
- CLs method.
 - T. Junk, Nucl. Instrum. Methods Phys. Res. A 434 (1999) 435–443.
 - TLimit (part of ROOT analysis framework)
 - Calculate CLs for rising input signal cross sections, until I-CLs > 0.95 for 95% CL limit.
- Low statistics forced application of limit at 3 lepton cut level.
 - Low statistics gave unstable results for stricter cuts.
- Simple event counting: no shape information in limit.
- Produced toy MC using fast ATLAS simulation at different M_{H+} from 375 GeV to 500 GeV in increments of 25 GeV

Systematic Uncertainties

Largest systematic uncertainties

- Luminosity
- Pileup
- Theoretical cross section
- Jet energy scale
- Electron energy scale & resolution
- Muon energy scale & resolution
- Dead electron sensors.

Net Systematics

• Signal: ~26%

Background: ~22%

Limit

- Scan through m_{H+} from 375 to 500 GeV.
- Limit from 2 to 2.5 pb.
- Theoretical cross section times branching ratio at ~10⁻³ pb.
- Will require over 100 fb⁻¹ to exclude this scenario.

Next Steps

- Studied H⁺ scenarios have little sensitivity to current ATLAS data.
- Looking for alternative scenarios with greater sensitivity.
- As soon as possible will release results from 2011 data:
 - Will give us ~Ifb-I more statistics (and counting).
 - Allow using full cut flow for limit setting, further improving sensitivity.
 - Still don't expect to be able to exclude H⁺.
- Shifting focus onto inclusive SUSY 3-lepton analysis.
 - Analysis highly complementary, so can easily maintain H⁺ analysis.

Conclusions and Outlook

- $H^{\pm} \rightarrow \chi_i^{\pm} \chi_j^{0}$
 - Final state: Jets + trileptons + missing transverse energy.
 - Provides extra sensitivity to the H[±] in "LHC wedge region" of SUSY parameter space.
- Cutflow optimized for inclusive SUSY 3 lepton events effective for $H^+ \to \chi_i^{\ \pm} \chi_i^{\ 0}$
- Have set first ATLAS limit on $H^{\pm} \to \chi_i^{\pm} \chi_j^{0}$ cross section × branching ratio.
 - For this scenario, need over 100 fb⁻¹ of data before we can exclude or observe H[±] for this scenario.
- Focusing on inclusive SUSY searches while maintaining H[±] analysis.

BACKUP SLIDES

Discovery and Exclusion Sensitivity

- From m_h—max scenario
- See CERN-OPEN-2008-020 (arXiv:0901.0512)

Full SUSY parameter set

Scenario	μ (GeV)	M ₂ (GeV)	Tan β	σ for 400 GeV H+ @ 7 TeV (fb)
Α	135	210	7	2.73
Α	135	210	15	2.07
В	200	310	7	1.16
В	200	310	15	1.10

_Results from here.

Static Parameters

- $m_{H+} = 400 \text{ GeV}$
- $M_{SUSY} = 1000 \text{ GeV}$, At = Ab = 2000 GeV
- $m_t^{pole} = 172.4 \text{ GeV}$
- $m_b = 4.25 \text{ GeV}$
- $M_{stau} = 250 \text{ GeV}$, $M_{slep} = 150 \text{ GeV}$
- $A_{121} = A_{121} = 0$