LORENTZ NONINVARIANT NEUTRINO OSCILLATIONS

K. Whisnant
DPF '11
11Aug2011

• Review of neutrino oscillations due to neutrino mass
• The Standard Model Extension (SME): Lorentz and CPT violation in neutrinos
• Bicycle model
• General direction-independent Lorentz-violating (LV) models with 3 massless neutrinos
• Conclusions
Neutrino oscillations due to neutrino mass

- Mass eigenstates propagate in time: $e^{-iEt/\hbar} \rightarrow e^{-iEL}$ for relativistic ν's ($\hbar = c = 1$)
- $E = \sqrt{p^2 + m^2} \simeq p + \frac{m^2}{2p} + ... \implies$ different mass eigenstates acquire different phases
- Mass eigenstates (ν_i) \neq flavor eigenstates (ν_α) due to mixing

$$\nu_\alpha = \sum_j U_{\alpha j} \nu_j \quad (U \text{ is } 3 \times 3, \text{ unitary})$$

- ν's created in flavor eigenstates, $\nu_\alpha(0) = \sum_j U_{\alpha j} \nu_j$, so after time t

$$\nu_\alpha(t) = \sum_j U_{\alpha j} e^{-iE_j L} \nu_j = \sum_\beta \left(\sum_j U_{\alpha j} e^{-iE_j L} U_{j \beta}^\dagger \right) \nu_\beta$$

- Oscillation probability is $|\langle \nu_\beta | \nu_\alpha \rangle|^2$, or

$$P(\nu_\alpha \rightarrow \nu_\beta) = \delta_{\alpha \beta} - \sum_{j<k} \left[4 \Re(U_{\alpha j} U_{\alpha k}^* U_{\beta j}^* U_{\beta k}) \sin^2\left(\frac{1}{2}\Delta_{jkL}\right) - 2 \Im(U_{\alpha j} U_{\alpha k}^* U_{\beta j}^* U_{\beta k}) \sin(\Delta_{jkL}) \right]$$

$$\Delta_{jk} \equiv E_j - E_k = \frac{\delta m^2_{jk}}{2E}, \quad \delta m^2_{jk} \equiv m^2_j - m^2_k$$
- U described by 3 mixing angles (θ_{12}, θ_{13}, θ_{23}) and a CP-violating phase (δ)
- Two independent δm^2 (δm^2_{21}, δm^2_{31})
- $\delta m^2_{21} \simeq 7.6 \times 10^{-5}$ eV2 and $\sin^2 2\theta_{12} \simeq 0.87$ fit solar $\nu_e \rightarrow \nu_e$ and KamLAND reactor $\bar{\nu}_e \rightarrow \bar{\nu}_e$ data
- $\delta m^2_{31} \simeq 2.4 \times 10^{-3}$ eV2 and $\sin^2 2\theta_{13} \simeq 1.0$ fit atmospheric and K2K, MINOS long-baseline data (predominantly $\nu_\mu \rightarrow \nu_\tau$)

- ν mass provides only complete description of all data (except LSND/MiniBooNE)
- \Longrightarrow strong evidence for ν mass
Standard Model Extension (SME) (Colladay & Kostelecky)

- *Particle* Lorentz transformations that leave background vevs unchanged may be affected
- SME: all Lorentz symmetry-breaking terms that preserve $SU(3) \times SU(2) \times U(1)$
- Corresponding Hamiltonian for ν_L propagation in SME:

$$(h_{e f f})_{ij} = \left| \vec{p} \right| \delta_{ij} + \frac{(m^2)_{ij}}{2\left| \vec{p} \right|} + \frac{1}{\left| \vec{p} \right|} \left[a^{\mu} p_{\mu} - c^{\mu \nu} p_{\mu} p_{\nu} \right]_{ij}, \quad i, j = e, \mu, \tau$$

- For $\bar{\nu}$, $a \rightarrow -a$ (*CPT* violation)
- Choose direction-independent terms ($\mu = \nu = 0$); for relativistic ν's, $\left| \vec{p} \right| \simeq E$ and $p^\mu \simeq (E, -E \hat{p})$

$$(h_{e f f})_{ij} = \left| \vec{p} \right| \delta_{ij} + \frac{(m^2)_{ij}}{2E} + a_{ij} + c_{ij} E$$

- a terms are energy-independent (a has dimensions of E)
- c terms proportional to E (c dimensionless)
Bicycle Model (Kostelecky & Mewes)

\[
h_{\text{eff}} = \begin{pmatrix}
-2cE & \frac{1}{\sqrt{2}}a & \frac{1}{\sqrt{2}}a \\
\frac{1}{\sqrt{2}}a & 0 & 0 \\
\frac{1}{\sqrt{2}}a & 0 & 0
\end{pmatrix},
\]

- Eigenvalues \(\lambda_i = 0, -cE \pm \sqrt{(cE)^2 + a^2} \)
 \(\lambda_i - \lambda_j = \Delta_{ij} = \frac{1}{2E}(\delta m_{\text{eff}}^2)_{ij} \)

- must reproduce \(1/E \) behavior at high \(E \) from \(cE, a \) terms

 In bicycle model there is a see-saw mechanism in large \(E \) limit \((cE \gg a) \)

 \(\Delta_{32} \simeq a^2/(2cE) \) has correct \(E \) dependence!

 \(\delta m_{\text{eff}}^2 = a^2/c \) for atmospheric and long-baseline (LBL) \(\nu \)'s
• General bicycle model (BMW)

 Allow direction dependent and/or direction independent terms

 Add a_{ee} term to adjust solar osc. prob. at low E

 Does not fit all data simultaneously

• Tandem model (Katori, Kostelecky & Tayloe)

 Lorentz invariance violation and neutrino mass

 Solar and KamLAND data fit by neutrino mass terms

 Atmospheric and LBL data fit by LV terms (like bicycle model)

• Puma model (Diaz & Kostelecky) see next talk
General Direction-Independent LV Models with 3 Massless ν's

- 16 independent parameters: $c_{ij}E + a_{ij}$ with c and a traceless ($i, j =$ flavors)
- Rather than a random sampling of parameter space, we searched for structures that lead to $1/E$ behavior of at least one Δ_{ij} at high energy (to mimic see-saw mechanism of bicycle model)
- Method:

 Require $c_{ij}E \gg a_{ij}$ at high E (≥ 1 GeV)

 For given structure, expand eigenvalues of h_{eff} in powers of E

 $$\lambda = \alpha_1 E + \alpha_0 + \alpha_{-1}E^{-1} + ...$$

- Oscillation argument is $\Delta_{j,k} = \lambda_j - \lambda_k$

 $\implies 1/E$ behavior requires degeneracy at leading order (E^1) and next-to-leading order (E^0)

- α_1 values determined by eigenvalues of c matrix – degeneracy at leading order \implies constraints on c_{ij}

- Constraints on a_{ij} from requiring degeneracy at next-to-leading order

- Some constraints are “natural”, others require fine tuning
• Classify models by c_{ij} structure

3 real c_{ii}, 3 complex c_{ij}

$\implies 2^6 = 64$ textures

19 non-equivalent classes after allowing for flavor permutations

• Examples:

2B $D_iO_{ij} \implies \begin{pmatrix} c_{ee} & c_{e\mu} & 0 \\ c_{e\mu} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

2C $D_iO_{jk} \implies \begin{pmatrix} c_{ee} & 0 & 0 \\ 0 & 0 & c_{\mu\tau} \\ 0 & c_{\mu\tau} & 0 \end{pmatrix}$

<table>
<thead>
<tr>
<th>Number of nonzero c_L</th>
<th>Subclass</th>
<th>Structure</th>
<th>Number of flavor permutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>$-$</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1A</td>
<td>D_i</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1B</td>
<td>O_{ij}</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2A</td>
<td>D_iD_j</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2B</td>
<td>D_iO_{ij}</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2C</td>
<td>D_iO_{jk}</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2D</td>
<td>$O_{ijO_{ik}}$</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3A</td>
<td>$D_iD_jD_k$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3B</td>
<td>$D_iD_jO_{ij}$</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3C</td>
<td>$D_iD_jO_{ik}$</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>3D</td>
<td>$D_iO_{ijO_{ik}}$</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3E</td>
<td>$D_jO_{ijO_{ik}}$</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>3F</td>
<td>$O_{ijO_{ikO_{jk}}}$</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4A</td>
<td>$D_iD_jD_kO_{ij}$</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4B</td>
<td>$D_iD_jO_{ijO_{ik}}$</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>4C</td>
<td>$D_iD_jO_{ikO_{jk}}$</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4D</td>
<td>$D_iO_{ijO_{ikO_{jk}}}$</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5A</td>
<td>$D_iD_jD_kO_{ijO_{ik}}$</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>5B</td>
<td>$D_iD_jO_{ijO_{ikO_{jk}}}$</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>$D_iD_jD_kO_{ijO_{ikO_{jk}}}$</td>
<td>1</td>
</tr>
</tbody>
</table>
Class 1A

\[h_{\text{eff}} = \begin{pmatrix}
 c_{ee}E + a_{ee} & a_{e\mu} & a_{e\tau} \\
 a_{e\mu}^* & a_{\mu\mu} & a_{\mu\tau} \\
 a_{e\tau}^* & a_{\mu\tau}^* & a_{\tau\tau}
\end{pmatrix} \]

- \(\lambda_1 \approx cE + a_{ee} \), \(\lambda_2, \lambda_3 \approx \frac{1}{2} \left[a_{\mu\mu} + a_{\tau\tau} \mp \sqrt{(a_{\mu\mu} - a_{\tau\tau})^2 + 4|a_{\mu\tau}|^2} \right] \) to order \(E^0 \)
- Degeneracy to order \(E^0 \) requires \(a_{\mu\mu} = a_{\tau\tau} \) and \(a_{\mu\tau} = 0 \)
- Reduces to general bicycle model

Class 1B

\[h_{\text{eff}} = \begin{pmatrix}
 a_{ee} & c_{e\mu}E + a_{e\mu} & a_{e\tau} \\
 c_{e\mu}E + a_{e\mu}^* & a_{\mu\mu} & a_{\mu\tau} \\
 a_{e\tau}^* & a_{\mu\tau}^* & a_{\tau\tau}
\end{pmatrix} \]

- \(\lambda_1, \lambda_3 \approx \mp cE, \quad \lambda_2 = 0 \) to order \(E^0 \)
- Degeneracy to order \(E^0 \) not possible
• Can subtract off piece proportional to identity – does not affect oscillations
• Many cases reduce to others when degeneracy constraints applied
• Only 1A, 2C, 3B, 3F, 4D, 5B give $1/E$ dependence at high E

Class 2C

$$h_{\text{eff}} = \begin{pmatrix} a_{ee} & a_{e\mu} & c_{e\tau}E + a_{e\tau} \\ a_{e\mu}^* & c_{\mu\mu}E & a_{\mu\tau} \\ c_{e\tau}E + a_{e\tau}^* & a_{\mu\tau}^* & a_{\tau\tau} \end{pmatrix}$$

• Atmospheric and LBL neutrinos have

$$P(\nu_\mu \to \nu_e) = P(\nu_\mu \to \nu_\tau) = \frac{1}{2} \sin^2 2\theta \sin^2 \left(\frac{\delta m_{\text{eff}}^2 L}{2E} \right)$$

• Ruled out since ν_μ oscillates predominantly to ν_τ
Class 3F

\[
 h_{\text{eff}} = \begin{pmatrix}
 a_{ee} & c_{e\mu} E + a_{e\mu} & c_{e\tau} E + a_{e\tau} \\
 c_{e\mu} E + a_{e\mu}^* & a_{\mu\mu} & c_{\mu\tau} E + a_{\mu\tau} \\
 c_{e\tau} E + a_{e\tau}^* & c_{\mu\tau} E + a_{\mu\tau}^* & a_{\tau\tau}
\end{pmatrix}
\]

- Atmospheric and LBL neutrinos have

\[
P(\nu_\mu \rightarrow \nu_\mu) = \frac{5}{9} - 4|U_{\mu 2}|^2 \left(\frac{2}{3} - |U_{\mu 2}|^2 \right) \sin^2 \left(\frac{\delta m_{\text{eff}}^2 L}{2E} \right)
\]

- Ruled out since downward atmospheric \(\nu_\mu \) are not depleted

Only three classes also have correct oscillation amplitude for atmospheric and LBL \(\nu \)'s (3B, 4D, 5B)
Class 3B

\[h_{\text{eff}} = \begin{pmatrix} c_{ee}E + a_{ee} & a_{e\mu} & c_{e\tau}E + a_{e\tau} \\ a_{e\mu}^* & 0 & a_{\mu\tau} \\ c_{e\tau}E + a_{e\tau}^* & a_{\mu\tau}^* & c_{\tau\tau}E + a_{\tau\tau} \end{pmatrix} \]

- Degeneracy at order \(E \) requires \(c_{\tau\tau} = rc_{e\tau} = r^2c_{ee} \)

\[
P(\nu_\mu \to \nu_\mu) = 1 - \sin^2 2\theta \sin^2 \left(\frac{\delta m^2_{\text{eff}} L}{2E} \right)
\]
\[
P(\nu_\mu \to \nu_e) = \sin^2 \phi \sin^2 2\theta \sin^2 \left(\frac{\delta m^2_{\text{eff}} L}{2E} \right)
\]
\[
P(\nu_e \to \nu_e) \approx 1 - \sin^2 2\phi \sin^2 \left(\frac{(1 + r^2)cEL}{2} \right) - \sin^4 \phi \sin^2 2\theta \sin^2 \left(\frac{\delta m^2_{\text{eff}} L}{2E} \right)
\]

\[
\tan \phi \equiv r
\]

- \(\theta \approx \pi/4 \)

- Lack of large \(\nu_\mu \to \nu_e \) oscillation in K2K, MINOS and T2K implies small \(\phi \) \((r < 0.43) \)
• At lower energies (solar, KamLAND) large E limit does not apply
• Try to fit to KamLAND and solar (including matter effect)

Fit to KamLAND not as good as with neutrino mass

Resulting oscillation probability for solar ν’s too large at high energy

KamLAND

Solar osc. prob. using KamLAND parameters
Best fit to solar data alone still not good at high energies

Can only fit solar data with $r \geq 1$

$(\sin^2 2\theta_{13}^{eff} \geq 0.50)$
Class 4D

\[
h_{eff} = \begin{pmatrix}
 c_{ee}E + a_{ee} & c_{e\mu}E + a_{e\mu} & c_{e\tau}E + a_{e\tau} \\
 c_{e\mu}E + a_{e\mu}^* & a_{\mu\mu} & c_{\mu\tau}E + a_{\mu\tau} \\
 c_{e\tau}E + a_{e\tau}^* & c_{\mu\tau}E + a_{\mu\tau}^* & a_{\tau\tau}
\end{pmatrix}
\]

- After degeneracy imposed at order E and rotation in μ-τ sector, h_{eff} has same form as Class 3B

KamLAND fit

Solar osc. prob. using KamLAND parameters

Solar fit
Class 5B

\[h_{\text{eff}} = \begin{pmatrix} c_{ee}E + a_{ee} & c_{e\mu}E + a_{e\mu} & c_{e\tau}E + a_{e\tau} \\ c_{e\mu}E + a_{e\mu}^* & 0 & c_{\mu\tau}E + a_{\mu\tau} \\ c_{e\tau}E + a_{e\tau}^* & c_{\mu\tau}E + a_{e\tau}^* & c_{\tau\tau}E + a_{\tau\tau} \end{pmatrix} \]

- Nearly maximal \(\nu_\mu \rightarrow \nu_\tau \), small \(\nu_\mu \rightarrow \nu_e \implies c_{\mu\tau}^2 \ll c_{e\mu}^2 \ll c_{e\tau}^2 \)

KamLAND fit
Solar osc. prob. using KamLAND parameters
Solar fit
Conclusions

• SME allows new terms in effective Hamiltonian for ν propagation that have different energy dependence from ordinary oscillations (cE, a vs. m^2/E)

• A number of cases without neutrino mass can reproduce $1/E$ dependence at high E for atmospheric and LBL neutrinos

• None can also successfully fit solar and KamLAND data

• Standard Model with just neutrino masses is very robust (modulo LSND/MiniBooNE)

• Apparently neutrino mass is needed to explain some (if not all) oscillation data