First ADS analysis of $B^- \rightarrow D^0 K^- \rightarrow K^- \bar{K}^0$ decays in hadron collisions

Paola Garosi
(University of Siena & INFN Pisa)
for the CDF collaboration

DPF 2011
Meeting of the Division of Particles and Fields of the American Physical Society
Providence, August 09th–13th 2011
Motivation: CKM γ angle measurement

CKM matrix

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

CP violation if $\eta \neq 0$

$\beta \rightarrow u$ transition
B meson system
CKM γ angle through $B \to DK$ decays

CKM matrix

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2 / 2 & \lambda & A\lambda^3 \left(\rho - i\eta \right) \\ -\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\ A\lambda^3 \left(1 - \rho - i\eta \right) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

CP violation if $\eta \neq 0$

![Diagram of CP violation](image)

Use of $B \to DK$ decays is the cleanest way to measure γ:
- tree-level amplitude only
- tiny theoretical uncertainties

γ can be extracted exploiting the interference between the processes $b \to c\bar{s}$ ($B^- \to D^0 K^-$) and $b \to u\bar{c}s$ ($B^- \to \bar{D}^0 K^-$), when D^0 and \bar{D}^0 decay into the same final state

Favored $b \to c$ transition

$$A_1 \sim V_{cb} V_{us}^* \sim \lambda^3$$

Color suppressed $b \to u$ transition, sensitive to γ

$$A_2 \sim V_{ub} V_{cs}^* \sim \lambda^3 r_B e^{-i\delta_B} e^{-i\gamma}$$
Current situation of γ using $B^- \rightarrow D^0 K^-$

- **GGSZ (Giri-Grossmann-Soffer-Zupan) method** ([PRL78,3257, PRD68,054018])
 that uses the $B^\pm \rightarrow D K^\pm$ decays with the D^0 and \bar{D}^0 reconstructed into three-body final state. For example the $D^0 \rightarrow K_{s}^{0} \pi^+ \pi^-$
- **GLW (Gronau-London-Wyler) method** ([PLB253,483 PLB265,172])
 that uses the $B^\pm \rightarrow D K^\pm$ decays with D_{CP} decay modes. $D_{CP+} \rightarrow \pi^+ \pi^-, K^+ K^-$
 and $D_{CP-} \rightarrow K_{s}^{0} \pi^0, K_{s}^{0} \omega, K_{s}^{0} \phi$.
- **ADS (Atwood-Dunietz-Soni) method** ([PRL78,3257; PRD63,036005])
 that uses the $B^\pm \rightarrow D K^\pm$ decays with D reconstructed in the doubly Cabibbo suppressed $D^0 \rightarrow K^+ \pi^-$

γ is the least well-known angle of the CKM triangle nowadays.

$\gamma(\text{deg}) = 68 \pm 13 - 14$

$\gamma(\text{deg}) = 76 \pm 11$
ADS method

Direct CP violation in suppressed $B \rightarrow DK$ modes
Interference of “suppressed modes”:

\[V_{ub} \sim \gamma \]

1) Color suppressed

\[b \rightarrow c \]

\[V_{ub} \sim V_{cs} \]

\[K^- \]

\[\pi^- \]

They decay into the same final state and they are indistinguishable.

2) Color favored

\[b \rightarrow s \]

\[V_{ub} \sim V_{us} \]

\[K^+ \]

\[\pi^- \]

\[\text{Doubly Cabibbo suppressed} \]

\[f_{col-sup} \text{ large CP-violating asymmetry} \]
ADS observables

Observables

\[A_{ADS}(K) = \frac{\mathcal{B}(B^{-} \to [K^{+}\pi^{-}]_{D}K^{-}) - \mathcal{B}(B^{+} \to [K^{-}\pi^{+}]_{D}K^{+})}{\mathcal{B}(B^{-} \to [K^{+}\pi^{-}]_{D}K^{-}) + \mathcal{B}(B^{+} \to [K^{-}\pi^{+}]_{D}K^{+})} \]

Asymmetry of the suppressed modes

\[R_{ADS}(K) = \frac{\mathcal{B}(B^{-} \to [K^{+}\pi^{-}]_{D}K^{-}) + \mathcal{B}(B^{+} \to [K^{-}\pi^{+}]_{D}K^{+})}{\mathcal{B}(B^{-} \to [K^{-}\pi^{+}]_{D}K^{-}) + \mathcal{B}(B^{+} \to [K^{+}\pi^{-}]_{D}K^{+})} \]

Ratio of suppressed and favored modes

\[R^{\pm}(K) = \frac{\mathcal{B}(B^{\pm} \to [K^{\mp}\pi^{\pm}]_{D}K^{\pm})}{\mathcal{B}(B^{\pm} \to [K^{\pm}\pi^{\mp}]_{D}K^{\pm})} \]

Ratio of suppressed and favored modes, charge separated. R+ and R- are statistically uncorrelated and sensitive to γ

From theory:

\[A_{ADS}(K) = 2r_{B}r_{D} \sin(\delta_{B} + \delta_{D})\sin\gamma/R_{ADS}(K) \]

\[R_{ADS}(K) = r_{D}^{2} + r_{B}^{2} + 2r_{B}r_{D}\cos(\delta_{B} + \delta_{D}) \cos\gamma \]

\[R^{\pm}(K) = r_{D}^{2} + r_{B}^{2} + 2r_{B}r_{D}\cos(\delta_{B} + \delta_{D} \pm \gamma) \]
Asymmetry of the π mode

$$A_{\text{ADS}} = \frac{2r_B r_D \sin(\delta_B + \delta_D) \sin \gamma}{r_D^2 + r_B^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos \gamma}$$

The maximum value achievable is:

$$A_{\text{ADS}}^{\text{MAX}} = \frac{2r_B r_D}{r_D^2 + r_B^2}$$

For the K mode:
- $r_B(K) \sim 0.1$
 \[A_{\text{ADS}}^{\text{MAX}}(K) \sim 0.9 \]

For the π mode:
- $r_B(\pi) \sim 0.005$
 \[A_{\text{ADS}}^{\text{MAX}}(\pi) \sim 0.16 \]

Small CP-violating asymmetries are possible also for the π mode, so we will measure the ADS observables also this mode.
To measure R_{ADS} and R^\pm we need to reconstruct two decay channels:

"Suppressed" mode

- Final state is $B^- \rightarrow D(\rightarrow K^+ \pi^-) h^-$
- Color suppressed
- Cabibbo favored

"Favored" mode

- Final state is $B^- \rightarrow D(\rightarrow K^- \pi^+) h^-$
- Color favored
- Cabibbo favored

Also the channel with the color suppressed transition of the B, followed by the doubly Cabibbo suppressed decay of the D^0 has this same final state, but its contribution is negligible.
To measure R_{ADS} and R^\pm we need to reconstruct two decay channels:

“Suppressed” mode

Color favored

$doubly~Cabibbo~suppressed$

Color suppressed

Cabibbo favored

“Favored” mode

Color favored

Cabibbo favored

Also the channel with the color suppressed transition of the B, followed by the doubly Cabibbo suppressed decay of the D^0 has this same final state, but its contribution is negligible.

Final state is

$B^- \rightarrow D(\rightarrow K^+ \pi^-) h^-$

Same sign charge

Final state is

$B^- \rightarrow D(\rightarrow K^- \pi^+) h^-$
In the ADS method we have two observables and four unknowns.

The results has to be combined with other methods to extract γ.

For example, we can combine ADS and GLW methods, measure all the interesting branching ratios and fit r_B, δ_B, δ_D and γ.

Or, for example, we can use external inputs for the (well-known) D quantities and fit r_B and γ.
Current measurements of the ADS observables

BaBar (467M BB)

(Phys.Rev.D 82, 072006 (2010))

\(\mathcal{R}_{DK} = (1.1 \pm 0.6 \pm 0.2) \times 10^{-2} \)

\(A_{DK} = -0.86 \pm 0.47^{+0.12}_{-0.16} \)

\(~ 20 \) \(B \rightarrow DK \) events,

with a significance of \(\sim 2 \sigma \)
Current measurements of the ADS observables

BaBar (467M BB)
(Phys.Rev.D 82, 072006 (2010))

Belle (772M BB)
(arXiv:1103.5951v1)

\(\approx 20 \, \text{B} \rightarrow \text{D} \, \text{K} \) events,
with a significance of \(\approx 2\sigma \)

\(\mathcal{R}_{DK} = (1.1 \pm 0.6 \pm 0.2) \times 10^{-2} \)

\(\mathcal{A}_{DK} = -0.86 \pm 0.47 ^{+0.12}_{-0.16} \)

\(\approx 56 \, \text{B} \rightarrow \text{D} \, \text{K} \) events,
with a significance of \(4.1\sigma \)

\[\mathcal{R}_{DK} = [1.63^{+0.44}_{-0.41}(\text{stat})^{+0.07}_{-0.13}(\text{syst})] \times 10^{-2} \]

\[\mathcal{A}_{DK} = -0.39^{+0.26}_{-0.28}(\text{stat})^{+0.04}_{-0.03}(\text{syst}) \]
Current measurements of the ADS observables

BaBar (467M BB) (Phys.Rev.D 82, 072006 (2010))

Belle (772M BB) (arXiv:1103.5951v1)

LHCb (343pb⁻¹) (Preliminary for EPS)

\[\mathcal{R}_{DK} = (1.1 \pm 0.6 \pm 0.2) \times 10^{-2} \]

\[A_{DK} = -0.86 \pm 0.47 ^{+0.12}_{-0.16} \]

~ 20 B→DK events, with a significance of ~2σ

Significance of B→DK~4.0σ
First measurement of A_{ADS}, R_{ADS} and R^{\pm} at a hadron collider
Analysis overview

• Use the 7fb⁻¹ of data.

• Completely data-driven measurement -- the favored $B \rightarrow D\pi$ mode is used as a model for the suppressed.

• Cuts optimization, to find a significant suppressed peak.

• Invariant mass distribution with the pion mass hypothesis to the track from B. --> Need to disentaggle the signal and background contributions with an extended unbinned maximum likelihood fit.

• Efficiency corrections.
Favored and suppressed samples ($L = 7 \text{ fb}^{-1}$)

Favored $\bar{B} \rightarrow D(\rightarrow K^- \pi^+) \pi^-$

Suppressed $\bar{B} \rightarrow D(\rightarrow K^+ \pi^-) \pi^-$

CDF Run II Preliminary $L_{\text{int}} = 7 \text{ fb}^{-1}$

Favored decay

$\bar{B} \rightarrow D_{\text{fav}}^0 \pi^- \rightarrow [K^- \pi^+] \pi^- + \text{c.c.}$

Suppressed decay

$\bar{B} \rightarrow D_{\text{sup}}^0 \pi^- \rightarrow [K^+ \pi^-] \pi^- + \text{c.c.}$
Favored and suppressed samples ($L = 7\,\text{fb}^{-1}$)

Favored $B^- \to D(\to K^- \pi^+)\pi^-$

Suppressed $B^- \to D(\to K^+ \pi^-)\pi^-$

Cuts optimization

- We directly used the CF sample (not MC) selecting the signal (S) in $\pm 2\sigma$ of $B \to D\pi$ peak and the background (B) in $[5.4, 5.8]$ range
- We maximized the quantity $\frac{S}{1.5 + \sqrt{B}}$ (arXiv:0308063v2)

Crucial step toward the DCS modes
Optimized selection

D^0 candidate

Cuts on:
- the invariant mass
- veto on the swapped identity of the D decay products
- angular distribution
- the decay length wrt B to remove $B \rightarrow 3$ body decays
- particle identification of tracks from D^0 to remove $D^0 \rightarrow \pi \pi$ events
Optimized selection

B candidate

Cuts on:
- decay length wrt primary vertex
- impact parameter
- angle between momentum and decay length
Optimized selection

B candidate

Cuts on:
- decay length wrt primary vertex
- impact parameter
- angle between momentum and decay length

isolation

\[
I(B) = \frac{p_T(B)}{p_T(B) + \sum_i p_T(i)}
\]

- 3D vertex quality, obtained with the 3D silicon-tracking, to:
 - resolve multiple vertices along the beam direction
 - reject fake tracks.

Background reduces \(\times 2\), small inefficiency on signal (<10%).
Favored and suppressed after cut optimization

Favored \(B^- \rightarrow D(\rightarrow K^- \pi^+) \pi^- \)

Suppressed \(B^- \rightarrow D(\rightarrow K^+ \pi^-) \pi^- \)

CDF Run II Preliminary \(L_{\text{int}} = 7 \text{ fb}^{-1} \)

Favored decay
\[
B^- \rightarrow D_{\text{fav}}^0 \pi^- \rightarrow [K^- \pi^+] \pi^- + \text{c.c.}
\]

Suppressed decay
\[
B^- \rightarrow D_{\text{sup}}^0 \pi^- \rightarrow [K^+ \pi^-] \pi^- + \text{c.c.}
\]

Events per 10 MeV/c^2

Signal region
Fit procedure

$B^- \rightarrow DK^-$ signal overlaid in the tail of the $B^- \rightarrow D\pi^-$. Use of an extended unbinned maximum likelihood fit (combined on favored and suppressed modes) to separate them.

We used:

- mass information
- particle identification (dE/dx with $K-\pi$ separation: 1.5σ for $p > 2$ GeV/c)

Common parameters between favored and suppressed:

- ratio between $N(B^- \rightarrow D^{*0} \pi^-)/N(B^- \rightarrow D^0 \pi^-)$
- combinatorial background pdf
To reject most of the physics backgrounds, we narrow the fit windows, starting from 5.17 GeV/c^2.

After a MC study, we found that the most significant background contributions are:

- $B^- \rightarrow D^{0*} \pi^-$, $D^{0*} \rightarrow D^{0} \gamma/\pi^0$ for both favored and suppressed
- for the suppressed only:
 - the inclusive $B^- \rightarrow D \rightarrow X h^-$
 - the three body $B^- \rightarrow K^- \pi^+ \pi^-$
 - the $B^0 \rightarrow D_0^{*+} l^{+} \nu_l$

All contributions are modeled using MC simulation and included in the fit.
Results: favored reconstruction

\[B^+ \rightarrow \bar{D}(\rightarrow K^+ \pi^-) \pi^+ \]

CDF Run II Preliminary \(L_{\text{int}} = 7 \text{ fb}^{-1} \)

\[B^- \rightarrow \bar{D}(\rightarrow K^- \pi^+) \pi^- \]

CDF Run II Preliminary \(L_{\text{int}} = 7 \text{ fb}^{-1} \)

Yield \((B \rightarrow D_{\text{fav}}K) = 1461 \pm 57 \ (7 \text{ fb}^{-1}) \)

Yield \((B \rightarrow D_{\text{fav}}\pi) = 19774 \pm 145 \ (7 \text{ fb}^{-1}) \)
Results: suppressed reconstruction

\[B^+ \rightarrow D(K^- \pi^+) \pi^+ \]

\[B^- \rightarrow D(K^+ \pi^-) \pi^- \]

CDF Run II Preliminary \(L_{\text{int}} = 7 \text{ fb}^{-1}\)

Yield (\(B \rightarrow D_{\text{sup}}K\)) = 32 ± 12 (significance = 3.2 \(\sigma\) (with syst))

Yield (\(B \rightarrow D_{\text{sup}}\pi\)) = 55 ± 14 (significance = 3.6 \(\sigma\))
Results: suppressed reconstruction

\[B^+ \rightarrow D(\rightarrow K^- \pi^+) \pi^+ \]

\[B^- \rightarrow D(\rightarrow K^+ \pi^-) \pi^- \]

CDF Run II Preliminary \(L_{\text{int}} = 7 \text{ fb}^{-1} \)

Significance for a non-null \(A_{\text{ADS}}(K) \) value is \(2.2\sigma \)
Results: the observables

First measurement of A_{ADS}, R_{ADS} and R^\pm at a hadron collider.

Results are corrected for different reconstruction efficiency of: K^+/K^-, π^+/π^- and $K^+\pi^-/K^-\pi^+$

Final results:

$$R_{ADS}(\pi) = (2.8 \pm 0.7 \text{ (stat.)} \pm 0.4 \text{ (syst.)}) \cdot 10^{-3}$$

$$R_{ADS}(K) = (22.0 \pm 8.6 \text{ (stat.)} \pm 2.6 \text{ (syst.)}) \cdot 10^{-3}$$

$$A_{ADS}(\pi) = 0.13 \pm 0.25 \text{ (stat.)} \pm 0.02 \text{ (syst.)}$$

$$A_{ADS}(K) = -0.82 \pm 0.44 \text{ (stat.)} \pm 0.09 \text{ (syst.)}$$

$A_{ADS}(K)$ is 2.2σ far from zero.

$$R^+(\pi) = (2.4 \pm 1.0 \text{ (stat.)} \pm 0.4 \text{ (syst.)}) \cdot 10^{-3}$$

$$R^+(K) = (42.6 \pm 13.7 \text{ (stat.)} \pm 2.8 \text{ (syst.)}) \cdot 10^{-3}$$

$$R^-(\pi) = (3.1 \pm 1.1 \text{ (stat.)} \pm 0.4 \text{ (syst.)}) \cdot 10^{-3}$$

$$R^-(K) = (3.8 \pm 10.3 \text{ (stat.)} \pm 2.7 \text{ (syst.)}) \cdot 10^{-3}$$

(CDF public note 10615)
Comparing the observables...

...the results are in agreement and compatible with other experiments.

\[B \rightarrow D\pi \]

- **BABAR** (PRD10.072006)
- **Belle** (arXiv:1103.3951)
- **CDF II**
- **AVG** (HESG)

\[B \rightarrow D\pi \] \[R_{ADS}(\pi) \]

- **BABAR** (PRD10.072006)
- **Belle** (arXiv:1103.3951)
- **CDF II**
- **AVG** (HESG)

\[B \rightarrow D\pi \] \[A_{ADS}(\pi) \]

- **BABAR** (PRD10.072006)
- **Belle** (arXiv:1103.3951)
- **CDF II**
- **AVG** (HESG)

\[B \rightarrow DK \]

- **BABAR** (PRD10.072006)
- **Belle** (arXiv:1103.3951)
- **CDF II**
- **LHCb** (EPS preliminaries)

\[B \rightarrow DK \] \[R_{ADS}(K) \]

- **BABAR** (PRD10.072006)
- **Belle** (arXiv:1103.3951)
- **CDF II**
- **LHCb** (EPS preliminaries)

\[B \rightarrow DK \] \[A_{ADS}(K) \]

- **BABAR** (PRD10.072006)
- **Belle** (arXiv:1103.3951)
- **CDF II**
- **LHCb** (EPS preliminaries)

Yellow band is the old average.

Results are combined with other methods to obtain \(\gamma \) measurement.
CDF program on γ: GLW result

The ADS measurement belongs to a broader program of CDF for measuring γ from trees.

Recently published the GLW measurement using 1 fb$^{-1}$ of data (Phys.Rev.D81:031105,2010)

Direct CP violation in $B\rightarrow D_{CP+}(\rightarrow K\bar{K}/\pi\pi)$ K modes

Yield ($B\rightarrow D_{CP+}K$) \sim 90 (1 fb$^{-1}$)
Conclusions

• CDF performed:
 • first measurement of A_{ADS}, R_{ADS} and R^{\pm} at a hadron collider using 7 fb$^{-1}$.
 • Evidence of suppressed D_{π} and DK signals
 • $A_{\text{ADS}}(K)$ at 2.2σ different from zero
 • first measurement of A_{CP^+} and R_{CP^+} at a hadron collider using 1 fb$^{-1}$.

• Significantly contribute to global knowledge of γ

• CDF demonstrated the capability of hadron collider with B to charm decays, getting competitive results with B-factories.
BACK-UP
The Tevatron

Good performances on Run II:
- peak $L_{\text{inst}} = 3.5 - 4 \times 10^{32} \text{cm}^{-2}\text{s}^{-1}$
- delivering 2.5 fb$^{-1}$/year

Tevatron is great for rare B decay searches:
- **Large b production cross section**
 (x1000 times larger than e^+e^- B factories)
- **All B species** are produced (B^0, B^+, B_s, $\Lambda_b...$)
The Tevatron

Tevatron is great for rare B decay searches:

- **Large b production cross section**
 (x1000 times larger than e⁺e⁻ B factories)
- **All B species** are produced (B⁰, B⁺, Bₛ, Λ_b,...)

But:

- The **total inelastic x-section** is a factor 10³ larger than \(\sigma(b\bar{b}) \)
- The **BRs** of rare b-hadron decays are \(O(10^{-6}) \) or lower

Interesting events must be extracted from a high track multiplicity environment

Detectors need to have:

- **Very good tracking** and vertex resolution and highly selective trigger

Good performances on Run II:

- peak \(L_{\text{inst}} = 3.5-4 \times 10^{32}\text{cm}^{-2}\text{s}^{-1} \)
- delivering 2.5 fb⁻¹/year

tot delivered \(L_{\text{int}} > 11.5 \text{ fb}^{-1} \)
The CDF II detector

TRACKING system:

• DRIFT CHAMBER
 96 layers (|\eta|<1)
 \rightarrow 1.5\sigma \pi/K separation by dE/dx

• SILICON TRACKER
 7 layers (1.5-22cm from beam pipe)
 \rightarrow I.P. resolution 35 \mu m at 2 GeV
 \rightarrow \sigma(p_T)/p_T^2 \sim 0.015\% (c/GeV)

TRACKING TRIGGER system:

• Chamber track processor at L1, 2D tracks in COT, p_T > 1.5 GeV

• Silicon Vertex Trigger at L2, 2D tracks p_T > 2 GeV,
 Impact Parameter measurement (trigger on events containing long lived particles)
Fit procedure

Use of an extended unbinned maximum likelihood fit (combined on favored and suppressed modes) to separate signals contribution.

\[
\mathcal{L} = \prod_{k} \frac{\mu^N}{N!} e^{-\mu} [f_{\text{sig}} \mathcal{F}_{\text{sig}} + (1 - f_{\text{sig}}) \cdot \mathcal{F}_{\text{back}}]
\]

\(F_{\text{sig}}\) = sum of \(B^{-} \rightarrow D^{0} \pi^{-}\), \(B^{-} \rightarrow D^{*0} \pi^{-}\) and \(B^{-} \rightarrow D^{0} K^{-}\) likelihood

\(F_{\text{back}}\) = sum of combinatorial and physics background likelihood

We used:
- mass information
- particle identification (dE/dx with K-π separation: 1.5 \(\sigma\) for p > 2 GeV/c)

Common parameters between favored and suppressed:
- ratio between \(N(B^{-} \rightarrow D^{*0} \pi^{-})/ N(B^{-} \rightarrow D^{0} \pi^{-})\)
- combinatorial background pdf
Implementation of a Likelihood FIT using masses and particle identification (dE/dx) information to determine the signal composition.

\[\text{K}^+ - \pi \text{ separation: } 1.5 \sigma \text{ for } p > 2 \text{ GeV/c} \]
Results: physics background

Physics background for DCS:

<table>
<thead>
<tr>
<th>Decay</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^- \rightarrow D^0 \pi^-, D^0 \rightarrow D^0 \gamma/\pi^0$</td>
<td>2 ± 1</td>
</tr>
<tr>
<td>$B^- \rightarrow D^0 \pi^-, D^0 \rightarrow X$</td>
<td>100 ± 10</td>
</tr>
<tr>
<td>$B^- \rightarrow D^0 K^-, D^0 \rightarrow X$</td>
<td>3 ± 3</td>
</tr>
<tr>
<td>$B^- \rightarrow K^- \pi^+ \pi^-$</td>
<td>11 ± 3</td>
</tr>
<tr>
<td>$B^0 \rightarrow D_0^{*-} e^+ \nu_e$</td>
<td>5 ± 3</td>
</tr>
</tbody>
</table>

CDF Run II Preliminary $L_\text{int} = 7$ fb$^{-1}$

$B^+ \rightarrow \bar{D}_{\text{sup}}^0 \pi^+ \rightarrow [K^- \pi^+] \pi^+$

$B^+ \rightarrow \bar{D}_{\text{sup}}^0 \pi^+ \rightarrow [K^- \pi^+] \pi^+$

$B^+ \rightarrow \bar{D}_{\text{sup}}^0 \pi^+ \rightarrow [K^+ \pi^-] \pi^-$

$B^+ \rightarrow \bar{D}_{\text{sup}}^0 \pi^+ \rightarrow [K^+ \pi^-] \pi^-$
- dE/dx we varied the shapes of the PID pdfs according to the full matrix correlation

- Combinatorial and physics background: we varied the shapes of the mass pdfs

- efficiency of K+/K-, π+/π-, K+π-/K−π+ reconstruction. The latter is estimated on our data
ADS: Likelihood

\[\mathcal{L} = \mathcal{L}_{CF^+} \cdot \mathcal{L}_{CF^-} \cdot \mathcal{L}_{DCS^+} \cdot \mathcal{L}_{DCS^-} \]

\[
\mathcal{L}_{CF^+} = \prod_i^{N_{\text{events}}} \left[(1 - b_{CF^+}) \cdot \left(f^{CF^+}_\pi \cdot \text{pdf}_\pi(M, ID) + c^+ \cdot f^{CF^+}_\pi \cdot \text{pdf}_{D^*}(M, ID) \right) + \left(1 - f^{CF^+}_\pi - c^+ \cdot f^{CF^+}_\pi \right) \cdot \text{pdf}_K(M, ID) \right] + b_{CF^+} \cdot \text{pdf}_{\text{comb}}(M, ID)
\]

\[
\mathcal{L}_{DCS^+} = \prod_i^{N_{\text{events}}} \left[(1 - b_{DCS^+}) \cdot \left(f^{DCS^+}_\pi \cdot \text{pdf}_\pi(M, ID) + c^+ \cdot f^{DCS^+}_\pi \cdot \text{pdf}_{D^*}(M, ID) \right) + \left(1 - f^{DCS^+}_\pi - c^+ \cdot f^{DCS^+}_\pi \right) \cdot \text{pdf}_K(M, ID) \right] + b_{DCS^+} \cdot \left(f^+_\pi \cdot \text{pdf}_\pi^{[X]}(M, ID) + f^+_K \cdot \text{pdf}_K(M, ID) + f^+_0 \cdot \text{pdf}_0(M, ID) \right) + (1 - f^+_\pi - f^+_K - f^+_0) \cdot \text{pdf}_{\text{comb}}(M, ID)
\]

- \(\text{pdf}_i(M, ID) = \text{pdf}_i(M) \cdot \text{pdf}_i(ID) \)
- **Fitted parameters**
 - \(b_{CF, DCS} \) = background fraction for CF and DCS
 - \(f_{\pi, CF, DCS} = B^{-} \rightarrow D^0 \pi^{-} \) fraction for CF and DCS signal
 - \(c = f_{B^+} / f_{\pi} \) (equal for CF and DCS)
 - \(f_{[X]}^{\pi} \) = fraction of \(B^{-} \rightarrow D^0 \pi^{-}, D^0 \rightarrow X \) in DCS reconstruction (constrained from MC)
 - \(f_{[X]}^{K} \) = fraction of \(B^{-} \rightarrow D^0 K^{-}, D^0 \rightarrow X \) in DCS reconstruction (constrained from MC)
 - \(f_{K^{\pi\pi}} \) = fraction of \(B^{-} \rightarrow K^{-} \pi^{+} \pi^{-} \) in DCS reconstruction (constrained from MC)
 - \(f_{B^0} \) = fraction of \(B^0 \rightarrow D^{*-} e^+ \nu \) in DCS reconstruction (constrained from MC)

Analogous expressions for negative charges.
CDF program on γ

The ADS measurement belongs to a broader program of CDF for measuring γ from trees.

Recently published the **GLW measurement** using 1 fb$^{-1}$ of data (Phys. Rev. D81:031105, 2010)

The **GLW method**

- Direct CP violation in $B \rightarrow D_{CP}K$ modes

 ($D_{CP+} \rightarrow \pi^+\pi^-, K^+K^-$ and $D_{CP-} \rightarrow K^0_s\pi^0, K^0_s\omega, K^0_s\phi$.)

- very clean method

- small asymmetry, sensitivity to γ proportional to r_B

The observables

\[
R_{CP\pm} = \frac{\Gamma(B^- \rightarrow D_{CP\pm}^0K^-) + \Gamma(B^+ \rightarrow D_{CP\pm}^0K^+)}{[\Gamma(B^- \rightarrow D^0K^-) + \Gamma(B^+ \rightarrow D^0K^+)]/2}
\]

\[
A_{CP\pm} = \frac{\Gamma(B^- \rightarrow D_{CP\pm}^0K^-) - \Gamma(B^+ \rightarrow D_{CP\pm}^0K^+)}{\Gamma(B^- \rightarrow D_{CP\pm}^0K^-) + \Gamma(B^+ \rightarrow D_{CP\pm}^0K^+)}
\]

From theory:

\[
R_{CP\pm} = 1 + r_B^2 \pm 2r_B \cos\delta_B \cos\gamma
\]

\[
A_{CP\pm} = 2r_B \sin\delta_B \sin\gamma/R_{CP\pm}
\]

3 independent equations

($A_{CP+}R_{CP+} = -A_{CP-}R_{CP-}$)

and 3 unknowns (r_B, γ, δ_B)