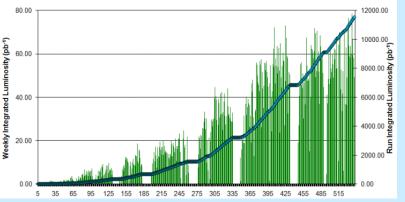

Bc and Suppressed Bs Decays at CDF

William Wester Fermilab for the CDF Collaboration

Very early and early CDF

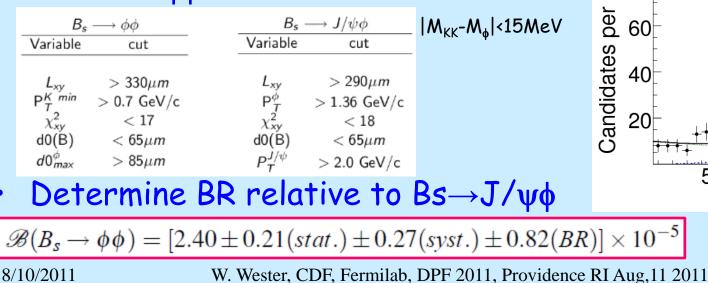

- Run 0 ('88-'89) (4pb⁻¹) saw the first sizable $J/\psi \rightarrow \mu^+\mu^-$ used to fully reconstruct B hadron decays
- Run I ('92-'96) (110 pb⁻¹) added silicon with highlights including the observation of exclusive Bs->J/ψφ and a first hint of Bc in semileptonic decays

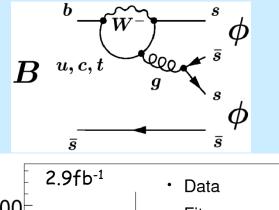
Advances in Run II for CDF in B Physics

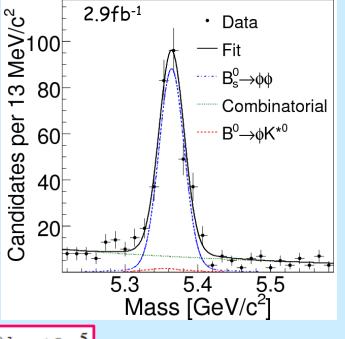
Improved silicon, tracking, muon coverage, particle ID, L1 track and L2 displaced vertex triggers

Much more accumulated data over ~10 years

Improved analysis techniques

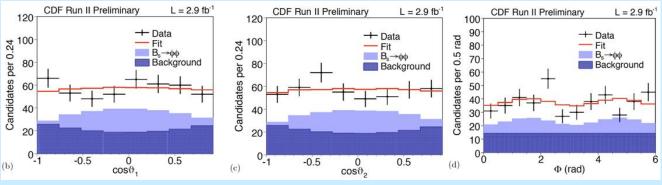

Study of production, decay, and properties give insight into the strong interaction, weak interaction, and possibilities of new physics


8/10/2011



Bs→øø Reconstruction and BR Measurement

- Use 2.9fb⁻¹ data collected with the two-track displaced vertex trigger
 - 2 tracks P_T >2 GeV/c with 120µm<d₀<2mm, opening angle 2°<| $\Delta \phi$ |<90°, L_{xy}>200µm
 - P_{T1}+P_{T2} > 4 6.5 GeV
- Optimized selection gives about 300 Bs→φφ. Use MC for rel. eff.


M. Dorigo, et al., arXiv:1107.4999

4

Bs→φφ Polarization

- Bs $\rightarrow \phi \phi$ is a PS \rightarrow VV decay that can be analyzed in a helicity basis to separate out 3 amplitudes: 2 transverse (spins perpendicular) and 1 longitudinal polarization
- Observable angles in Bs rest frame → helicity angles and polarization fractions

No single strong systematic

ϑ

untagged time-integrated

Ф

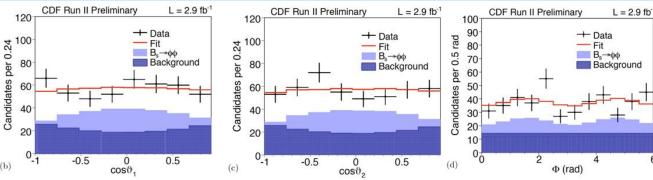
Cross check with Bs->J/ψφ

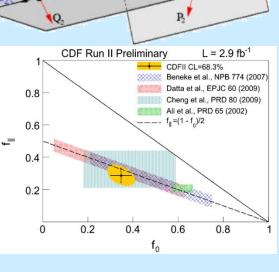
Similar to other Penguin decays in that f_L≈f_⊤ rather than f_L»f_⊤ "Polarization Puzzle"

 $f_L = 0.348 \pm 0.041$ (stat) ± 0.021 (syst)

 $f_T = 0.652 \pm 0.041$ (stat) ± 0.021 (syst)

Likelihood fit to determine the polarization fractions


M. Dorigo, et al., arXiv:1107.4999


8/10/2011

Bs→φφ Polarization

- Bs $\rightarrow \phi \phi$ is a PS \rightarrow VV decay that can be analyzed in a helicity basis to separate out 3 amplitudes: 2 transverse (spins perpendicular) and 1 longitudinal polarization
- Observable angles in Bs rest frame → helicity angles and polarization fractions

ϑ

untagged time-integrated

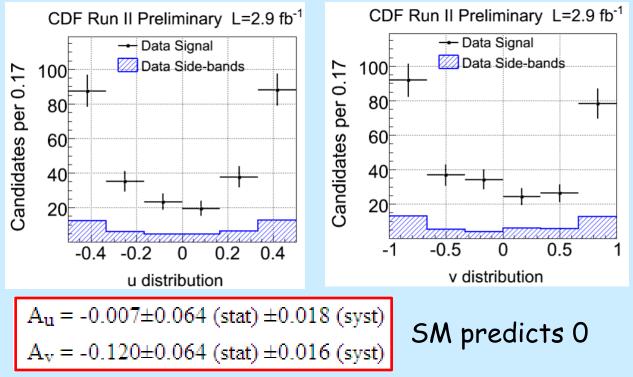
Ф

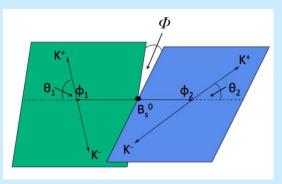
New physics or strong interaction effect?

 $f_L = 0.348 \pm 0.041 \text{ (stat)} \pm 0.021 \text{ (syst)}$

 $f_T = 0.652 \pm 0.041$ (stat) ± 0.021 (syst)

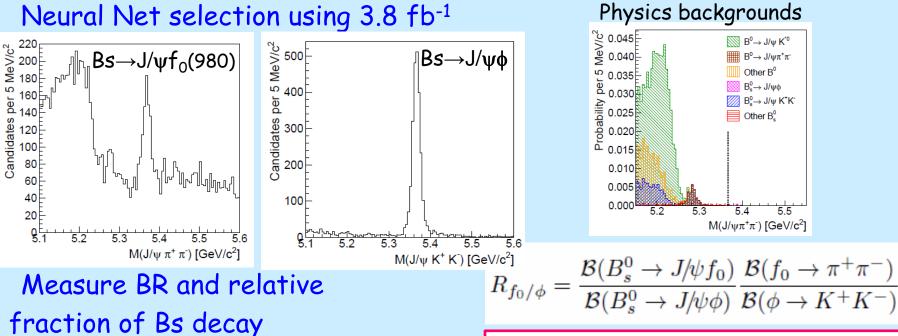
 Likelihood fit to determine the polarization fractions


M. Dorigo, et al., arXiv:1107.4999


8/10/2011

Bs→φφ, T-violating triple products asymmetries

- Triple products, $\vec{p} \times (\vec{\epsilon_1} \times \vec{\epsilon_2})$, are odd under T and thus have asymmetries sensitive to CP violation and possibly new physics.
- For $\Im(A_{\parallel}A_{\perp}^{\star})$, define u=cos Φ sin Φ with N(u>0) and N(u<0) and for $\Im(A_0A_{\perp}^{\star})$, define v= sin Φ in bins of cos θ_1 cos θ_2



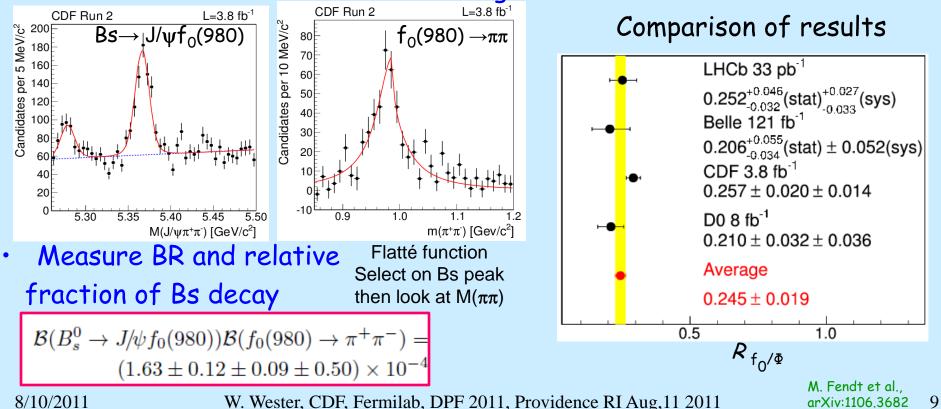
Main systematics include possible reflection or other B decay bkgds and the modeling of the combinatorial bkgd.

$Bs \rightarrow J/\psi f_0(980)$ **Relative BR**

- The decay $Bs \rightarrow J/\psi f_0(980)$ is CP-odd and can be used with high enough statistics to look for CP violation in Bs More details two talks hence, B. Abbott from DO
- The decay has only recently been observed by LHCb, Belle, CDF, and DO
- Neural Net selection using 3.8 fb⁻¹

 $\mathcal{B}(B^0_s \to J/\psi f_0(980))\mathcal{B}(f_0(980) \to \pi^+\pi^-) =$ $(1.63 \pm 0.12 \pm 0.09 \pm 0.50) \times 10^{-4}$

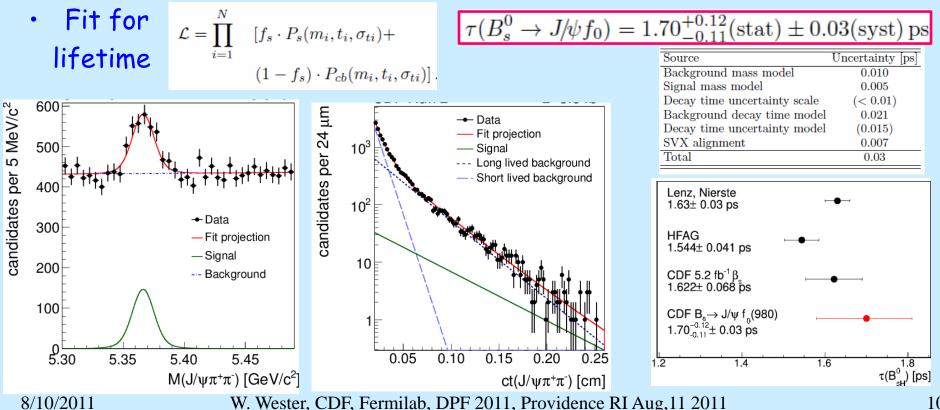
W. Wester, CDF, Fermilab, DPF 2011, Providence RI Aug, 11 2011


8

 $R_{f_0/\phi} = 0.257 \pm 0.020 (\text{stat}) \pm 0.014 (\text{syst})$

$Bs \rightarrow J/\psi f_0(980)$ **Relative BR**

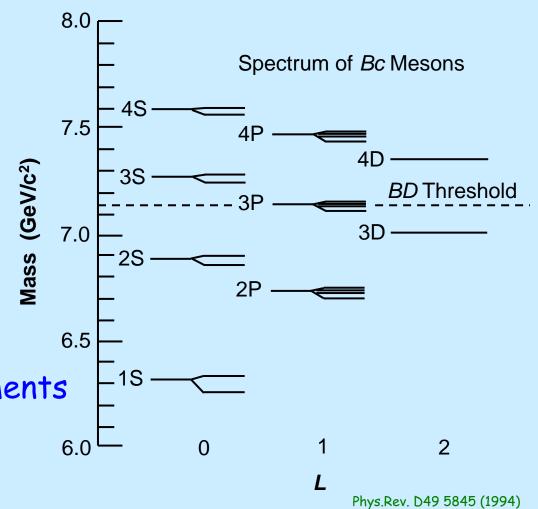
- The decay $Bs \rightarrow J/\psi f_0(980)$ is CP-odd and can be used with high enough statistics to look for CP violation in Bs More details two talks hence, B. Abbott from DO
- The decay has only recently been observed by LHCb, Belle, CDF, and DO
- Likelihood fit to determine size of signal



arXiv:1106.3682

$Bs \rightarrow J/\psi f_0(980)$ Lifetime in CP odd final state

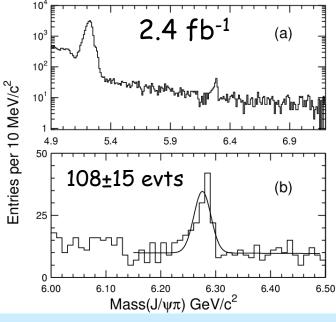
- In SM with no CP violation, the CP-odd lifetime is the lifetime of the theoretically derived heavy Bs state. $\tau_s^H = (1.630 \pm 0.030) \text{ ps}$ $\tau_s^L = (1.427 \pm 0.023) \text{ ps}$ theoretically derived based upon other meas.
- Similar neural net selection using 3.8 fb⁻¹ without a decay time variable but add variables such as the dipion mass.



• *b* quark *c* anti-quark

- Unique with two distinct heavy quarks
- A new bound system in
 ⁶
 which to make measurements
- CDF, DO, LHCb have observations

8/10/2011


- Full reconstruction allows for the mass measurement
- Two pass selection tuned on $Bu \rightarrow J/\psi K$ then look at $J/\psi \pi$

Selection variable	Standard	High-p _T
$p_T(Trk)$	> 1.7 GeV/c	>2.5 GeV/c
$p_T(J/\psi Trk)$	>5 GeV/c	>6 GeV/c
$P(\chi^2)$	>0.1%	>1%
$ d_{\rm SV}(Trk) $	<100 µm	<80 µm
$ d_{\rm PV}(Trk) /\sigma_{d_{\rm PV}(Trk)}$	>2.5	>3
$ d_{\rm PV}(B) /\sigma_{d_{\rm PV}(B)}$	<2.5	<2
ct	$>80 \ \mu m$	>100 µm
σ_{ct}	<30 µm	<25 µm
β	< 0.4 radians	< 0.3 radians

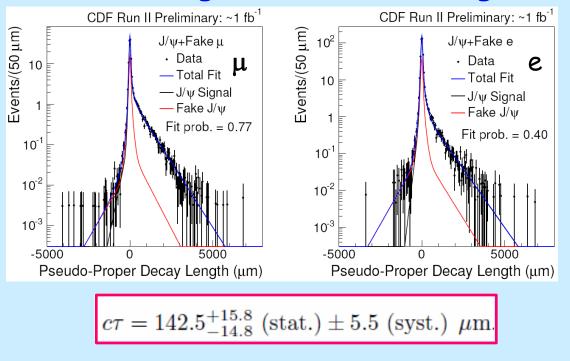
If one standard selection requirement is failed, keep event if it passes other High-Pt requirements

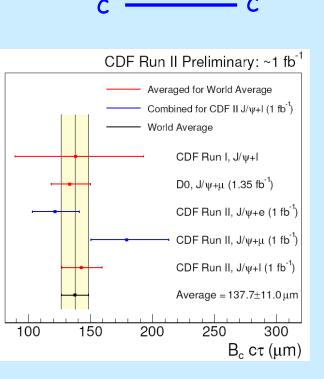
Systematics include uncertainties in the alignment of tracking detectors, momentum calibration, and fit procedure (scale factor on mass resolution)

$$6275.6 \pm 2.9(\text{stat}) \pm 2.5(\text{syst}) \text{ MeV}/c^2$$

PRL 100, 182002, 2008

 $M(Bc)_{D0} = 6300 \pm 14 \pm 5 MeV/c^2 PRL 101, 012001, 2008$ $M(Bc)_{LHCb} = 6270.3 \pm 1.4 MeV/c^2 (uncalibrated) M. Artuso, EPS 2011$


8/10/2011



Bc Lifetime measurement

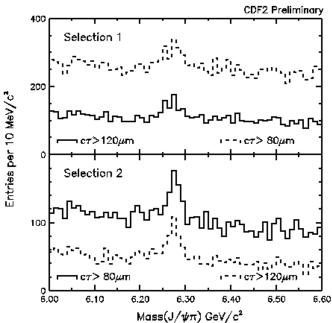
First determinations from semileptonic decays

Model backgrounds and missing v

13

ē,µ

Bc $\rightarrow J/\psi \pi$ Lifetime measurement

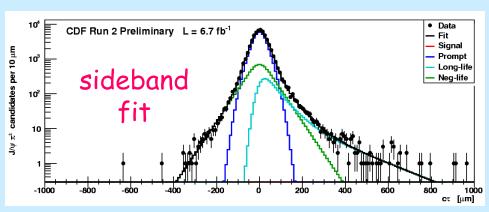


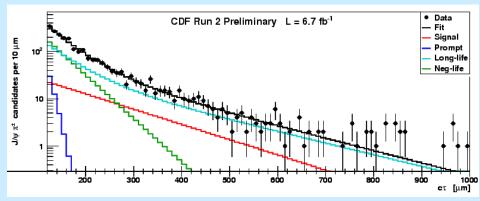
Use 6.7 fb⁻¹ and try two independent approaches

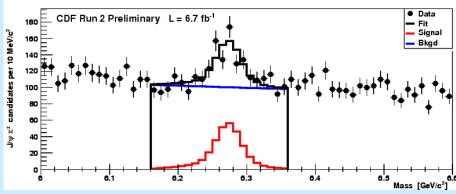
- Selection 1: no dependence of selection on decay time
 - Fit procedure fixes background determined from sideband region
- Selection 2: better S/N, but decay time dependence
 - Fit procedure uses sideband background parameters as a Gaussian constraint before fitting signal region
 - Requires MC input on the decay time

time dependence

Selection variable	selection 1	selection 2
$P_T(\pi)$	$> 2.0 \ { m GeV}/c$	> 2.0 GeV/c
$P_T(J/\psi \pi)$	$> 6.5 \ { m GeV}/c$	$> 6.5 ~{ m GeV}/c$
$Prob(\chi^2_{CTVMFT})$	> 0.01%	> 0.1%
$\sigma[M(J/\psi\pi)]$	-	$< 40 { m MeV}/c^2$
$\sigma[c\tau(J/\psi \pi)]$	$< 100 \ \mu { m m}$	$< Max[35, 65 - 3 imes P_T({ m B}){ m GeV}/c]~\mu{ m m}$
2D Pointing angle, β_T	-	< 0.2 radians
$ ip_{\text{signif}}(J/\psi\pi \text{ wrt p.v.}) $	$< 2.0 \sigma$	$< 2.0 \sigma$
Track isolation (cone=0.7)	>0.6	> 0.6
$c au_{ ext{MIN}}(J/\psi \pi)$	$> 120 \ \mu m$	$> 80 \ \mu m$


8/10/2011

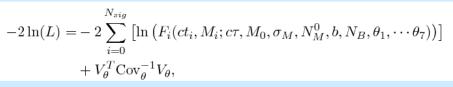


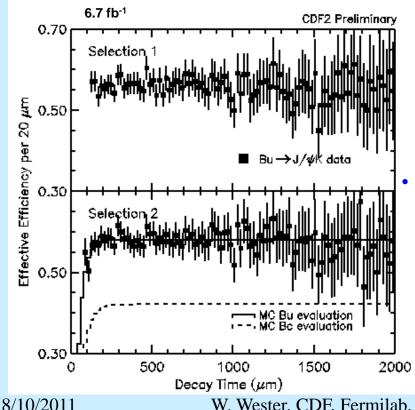

Selection 1 results

(will be a cross-check for selection 2)

• Likelihood fit with combined mass and decay time $L = \prod_{i} \left[f_s \cdot M_s(m_i, \sigma_{mi}) \cdot T_s(c\tau_i) + (1 - f_s) \cdot M_b(m_i) \cdot T_b(c\tau_i) \right]$

$$c\tau(B_c^-) = (135 \pm 16 \pm 10) \ \mu \text{m}$$


Largest systematic comes from varying the long-lived exponential in the background by $\pm 1\sigma$.


^{8/10/2011}

Selection 2

Likelihood fit with combined mass and decay time

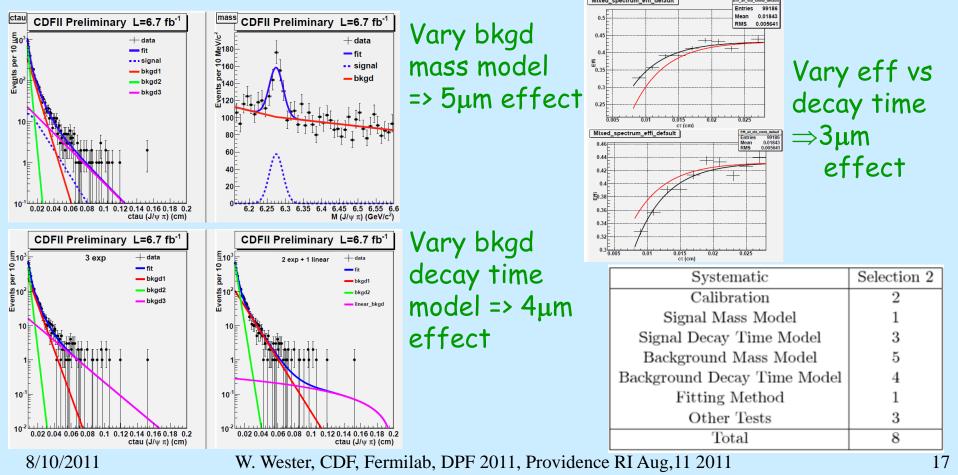
Signal= Eff x exponential

$$S_i(ct_i; c\tau, \theta_6, \theta_7, \theta_8) = E(ct_i; \theta_6, \theta_7) \int_{\tau'}^{ct'_{max}} d(ct') \frac{1}{\sqrt{2\pi}\sigma_{ct}} \exp\left(-\frac{(ct_i - ct')^2}{2\sigma_{ct}^2}\right) \frac{\exp\left(-ct'/c\tau\right)}{c\tau}$$

Background = 3 exponentials

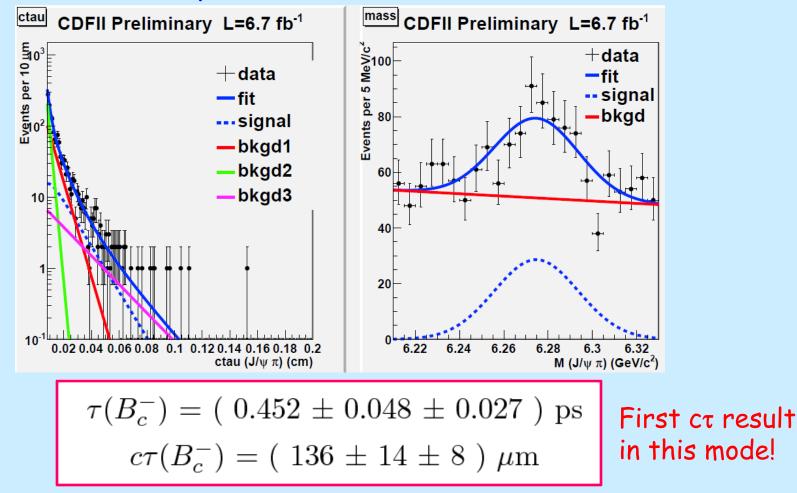
$$\begin{split} B_i(ct_i;\theta_1,\cdots,\theta_5) &= f_1 \frac{\exp\left(-ct_i/c\tau_1\right)}{c\tau_1\left(\exp\left(-ct_{min}/c\tau_1\right) - \exp\left(-ct_{max}/c\tau_1\right)\right)} \\ &+ f_2 \frac{\exp\left(-ct_i/c\tau_2\right)}{c\tau_2\left(\exp\left(-ct_{min}/c\tau_2\right) - \exp\left(-ct_{max}/c\tau_2\right)\right)} \\ &+ (1 - f_1 - f_2) \frac{\exp\left(-ct_i/c\tau_3\right)}{c\tau_3\left(\exp\left(-ct_{min}/c\tau_3\right) - \exp\left(-ct_{max}/c\tau_3\right)\right)}, \end{split}$$

Monte Carlo determination of the Efficiency vs decay time with a check using high statistics $Bu \rightarrow J/\psi K$ decays


$$E(c\tau) = N \times (1 - exp[-(c\tau - a)/b])$$

Decay	N	a (µm)	b (μm)
	0.5806 ± 0.0018		
$B_c^- \to J/\psi \ \pi^-$	0.4213 ± 0.0028	26.76 ± 7.45	42.72 ± 4.75

Systematic uncertainties


 Vary models of the efficiency vs decay time and the models of background mass and decay time distributions

Selection 2 results

Projections in decay time and mass and final result

W. Wester, CDF, Fermilab, DPF 2011, Providence RI Aug, 11 2011

8/10/2011

Summary

- CDF has a long history of utilizing fully reconstructed decays
- Recent results are presented for suppressed Bs decays
 - Bs $\rightarrow \phi \phi$

measurement

- Bs
$$\rightarrow$$
 J/ ψ f₀(980)

 $A_u = -0.007 \pm 0.064 \text{ (stat)} \pm 0.018 \text{ (syst)}$

 $A_v = -0.120 \pm 0.064 \text{ (stat)} \pm 0.016 \text{ (syst)}$

 $\tau(B_c^-) =$ ($0.452\,\pm\,0.048\,\pm\,0.027$) ps $c\tau(B_c^-) = (136 \pm 14 \pm 8) \ \mu {\rm m}$

8/10/2011

 \mathbf{ps}