Measurement of the production fraction times branching fraction
\[f(b \rightarrow \Lambda_b) \cdot B(\Lambda_b \rightarrow J/\psi \Lambda) \]

Ivan Heredia-De La Cruz
Cinvestav, Mexico
on behalf of the DØ Collaboration

The 2011 Meeting of the Division of Particles and Fields of the American Physical Society
Outline

1. Introduction
 - Motivation
 - Tevatron and the DØ Detector
 - Data – DØ RunII

2. Event Reconstruction

3. $\Lambda^0_b \rightarrow J/\psi \Lambda^0$ Branching Fraction measurement

4. Final comments and Conclusions
Introduction

Motivation

\(\Lambda_b^0 \) baryon: Experimental Status

- \(\Lambda_b^0(udb) \) is the lightest \(b \) baryon.
- Only a few decay channels studied and \(BR \) uncertainties are large \(\sim 30 - 60\% \).
- A measurement of the \(\Lambda_b^0 \rightarrow J/\psi \Lambda^0 \) \(BR \) establishes the methods to study \(b \rightarrow s \) (FCNC) decays such as \(\Lambda_b \rightarrow \mu^+ \mu^- \Lambda \) (where \(\Lambda_b^0 \rightarrow J/\psi \Lambda^0 \) can be used as a normalization channel).
- From PDG (2010):
 - \(f(b \rightarrow \Lambda_b) \cdot \mathcal{B}(\Lambda_b \rightarrow J/\psi \Lambda) = (4.7 \pm 2.3) \times 10^{-5} \).
 - Roughly \(f(b \rightarrow \Lambda_b) \sim f(b \rightarrow b_{\text{baryon}}) \sim 0.1 \) \(^1\)
 - \(\mathcal{B}(\Lambda_b \rightarrow J/\psi \Lambda) \sim 5 \times 10^{-4} \).

\(^1 f(b \rightarrow b_{\text{baryon}}) = (8.5 \pm 2.2) \times 10^{-2} \)
\(\Lambda_b^0 \rightarrow J/\psi \Lambda^0 \) branching fraction predictions

- PQCD\(^2\): \(\mathcal{B}(\Lambda_b \rightarrow J/\psi \Lambda) \sim (1.7 - 5.3) \times 10^{-4} \).
- Factorization\(^3\): several (quark) models predict \(\mathcal{B}(\Lambda_b \rightarrow J/\psi \Lambda) \sim (1.1 - 6.1) \times 10^{-4} \).

\(^2\)PRD 65, 074030 (2002).

Figure 1: Factorization ansatz introduces an effective color number to take account of the non-factorizable terms in the decay amplitude [PRD 58, 014016 (1998), figure from LHCb-2008-005 Public Note]
Tevatron and the DØ Detector

Tevatron
- $\sqrt{s} = 1.96$ TeV.
- 396 ns bunch spacing
- $L_{\text{peak}} \sim 4 \times 10^{32}/cm^2/s$

DØ Detector
- Excellent muon detector, $|\eta| < 2.2$.
- Silicon Microstrip Tracker and Central Fiber Tracker in a 2T solenoid allows accurate vertex and track reconstruction.
Data for this analysis is recorded using single muon and dimuon triggers.
Λ_b^0 reconstruction

- $p_T(\mu) > 2$ GeV/c
- $p_T(\mu^+\mu^-) > 3$ GeV/c
- $p_T(\Lambda) > 1.6$ GeV/c,
- Λ^0 decay length ($L_{xy}/\sigma_{L_{xy}} > 4$),
- (Λ^0 decay vertex to J/ψ vertex) pointing angle ($< 2.5^\circ$),

Due to Λ^0 large lifetime ($c\tau \sim 8$ cm), the p and π are required to have large impact parameter.

DØ can not distinguish between protons and pions. From Monte-Carlo, $p_T(p) > p_T(\pi)$. Then assume p is leading.
B^0_d reconstruction

- Similar conditions to reconstruct $K^0_S \rightarrow \pi^+\pi^-$.
- We use $B^0_d \rightarrow J/\psi K^0_S$ as normalization channel for $\Lambda^0_b \rightarrow J/\psi \Lambda^0$.
- Track pairs simultaneously identified as both Λ^0 and K^0_S due to different mass assignments to the same tracks are removed.
B^0_d reconstruction

- Similar conditions to reconstruct $K^0_S \rightarrow \pi^+ \pi^-$.
- We use $B^0_d \rightarrow J/\psi K^0_S$ as normalization channel for $\Lambda^0_b \rightarrow J/\psi \Lambda^0$.
- Track pairs simultaneously identified as both Λ^0 and K^0_S due to different mass assignments to the same tracks are removed.

Armeteros-Podolanski plots after removing track pair ambiguities.
Measurement of $f(b \rightarrow \Lambda_b) \cdot B(\Lambda_b \rightarrow J/\psi \Lambda)$

Event Reconstruction

Λ^0_b and B^0_d reconstruction and yields

- Λ^0_b (B^0_d) are reconstructed by performing a constrained fit to a common vertex for the Λ^0 (K^0_S) and two muon tracks.
- Minimum transverse proper decay length (>2) to reduce (J/ψ) prompt background.

![Graphs showing invariant mass distributions for Λ_b and B^0 decay products.](image)
Λ^0_b → J/ψΛ^0 Branching Fraction measurement: method

\[N_{\text{obs}} [\Lambda_b \rightarrow J/\psi(\mu^+\mu^-)\Lambda^0(p\pi^-)] = N_{\text{prod}} [\Lambda_b \rightarrow J/\psi(\mu^+\mu^-)\Lambda^0(p\pi^-)] \times \epsilon_R [\Lambda_b \rightarrow J/\psi(\mu^+\mu^-)\Lambda^0(p\pi^-)] \]

where the number of decays produced in collisions is:

\[N_{\text{prod}} [\Lambda_b \rightarrow J/\psi(\mu^+\mu^-)\Lambda^0(p\pi^-)] = \mathcal{L}\sigma(p\bar{p} \rightarrow b\bar{b}) f(b \rightarrow \Lambda_b) \times Br (\Lambda_b \rightarrow J/\psi\Lambda^0) \times Br (J/\psi \rightarrow \mu^+\mu^-) \times Br (\Lambda^0 \rightarrow p\pi^-) \]

The efficiency \(\epsilon_R \) (acceptance + detector + reconstruction) can be obtained from simulations. **Similar expressions for \(B^0_d \rightarrow J/\psi K^0_S \).**
\(\Lambda_b^0 \rightarrow J/\psi \Lambda^0 \) Branching Fraction measurement: method

\[
N_{\text{obs}} [\Lambda_b \rightarrow J/\psi (\mu^+ \mu^-) \Lambda^0 (p\pi^-)] = N_{\text{prod}} [\Lambda_b \rightarrow J/\psi (\mu^+ \mu^-) \Lambda^0 (p\pi^-)] \\
\times \epsilon_R [\Lambda_b \rightarrow J/\psi (\mu^+ \mu^-) \Lambda^0 (p\pi^-)]
\]

where the number of decays produced in collisions is:

\[
N_{\text{prod}} [\Lambda_b \rightarrow J/\psi (\mu^+ \mu^-) \Lambda^0 (p\pi^-)] = \mathcal{L} \sigma(p\overline{p} \rightarrow b\overline{b}) f(b \rightarrow \Lambda_b) \\
\times Br (\Lambda_b \rightarrow J/\psi \Lambda^0) Br (J/\psi \rightarrow \mu^+ \mu^-) Br (\Lambda^0 \rightarrow p\pi^-)
\]

The efficiency \(\epsilon_R \) (acceptance+detector+reconstruction) can be obtained from simulations. Similar expressions for \(B_d^0 \rightarrow J/\psi K_S^0 \). Then:

\[
\sigma_{\text{rel}} = \frac{f(b \rightarrow \Lambda_b) \cdot B(\Lambda_b \rightarrow J/\psi \Lambda)}{f(b \rightarrow B^0) \cdot B(B^0 \rightarrow J/\psi K_S^0)} = \frac{N_{\Lambda_b \rightarrow J/\psi \Lambda}}{N_{B^0 \rightarrow J/\psi K_S^0}} \cdot \frac{B(K_S^0 \rightarrow \pi^+ \pi^-)}{B(\Lambda \rightarrow p\pi^-)} \cdot \epsilon.
\]

\[
\epsilon \equiv \frac{\epsilon_R[B^0 \rightarrow J/\psi K_S^0]}{\epsilon_R[\Lambda_b \rightarrow J/\psi \Lambda]}
\]

(Most systematic errors cancel in this ratio)
The relative efficiency ϵ is determined from MC simulation:
- Pythia (production) + EvtGen4 (decay) + GEANT (detector).
- Same reconstruction algorithm as in data.

Data and Monte Carlo distributions are found to be in good agreement. Below an example.

We found $\epsilon = 2.37 \pm 0.05$.

Dominant systematic unc.:
- Unknown Λ_b^0 polarization, impacts evaluation of ϵ.
- Λ_b^0 initially polarized was implemented in EvtGen, assigning the correct spin density matrix. $\Lambda_b \to J/\psi\Lambda$ is described completely in terms of 5 (helicity) angles.
- Polarization is observed (mainly) through θ:

$$I(\theta) = \frac{1}{2} (1 + \alpha_{\Lambda_b} P_{\Lambda_b} \cos \theta) \quad (1)$$

(α_{Λ_b} and P_{Λ_b} are the Λ_b^0 (weak PV) asymmetry parameter and polarization.)
$\Lambda_0^b \rightarrow J/\psi \Lambda^0$ Branching Ratio measurement: results

\[
\frac{f(b \rightarrow \Lambda_b) \cdot B(\Lambda_b \rightarrow J/\psi \Lambda)}{f(b \rightarrow B^0) \cdot B(B^0 \rightarrow J/\psi K_s^0)} = 0.345 \pm 0.034 \text{ (stat.)} \\
\pm 0.033 \text{ (syst.)} \pm 0.003 \text{ (PDG)}
\]

- From the PDG, $f(b \rightarrow B^0) \cdot B(B^0 \rightarrow J/\psi K_s^0) = (1.74 \pm 0.08) \times 10^{-4}$.

Then:

\[
f(b \rightarrow \Lambda_b) \cdot B(\Lambda_b \rightarrow J/\psi \Lambda) \quad [\times 10^{-5}] = \\
6.01 \pm 0.60 \text{ (stat.)} \pm 0.58 \text{ (syst.)} \pm 0.28 \text{ (PDG)} = \\
6.01 \pm 0.88
\]

[PDG 2010: $(4.7 \pm 2.3) \times 10^{-5}$]

- arXiv:1105.0690. Accepted in PRD-RC.
Final comments: $\Lambda^0_b \rightarrow \mu^+ \mu^- \Lambda^0$

- We can use $\Lambda_b \rightarrow J/\psi + \Lambda$ to normalize $\Lambda_b \rightarrow \mu^+ \mu^- + \Lambda$:

 $BR[\Lambda_b \rightarrow \mu^+ \mu^- + \Lambda] = \frac{BR[\Lambda_b \rightarrow J/\psi + \Lambda] \times BR[J/\psi \rightarrow \mu^+ \mu^-]}{\varepsilon_{b \rightarrow W \rightarrow s} \times \frac{N_{\text{obs}}[\Lambda_b \rightarrow \mu^+ \mu^- + \Lambda_{[\pi p]}]}{N_{\text{obs}}[\Lambda_b \rightarrow J/\psi_{[\mu \mu]} + \Lambda_{[\pi p]}]}}$

- The BR of this rare decay ($\sim 2 - 5 \times 10^{-6}$ in SM) can be enhanced by new physics effects ($\times 10$ in SUSY models).

5 PRD 64, 074001 (2001); PRD 81, 056006 (2010); arXiv:0808.2113.
Final comments: $\Lambda^0_b \rightarrow \mu^+ \mu^- \Lambda^0$

- We can use $\Lambda_b \rightarrow J/\psi + \Lambda$ to normalize $\Lambda_b \rightarrow \mu^+ \mu^- + \Lambda$:

$$BR[\Lambda_b \rightarrow \mu^+ \mu^- + \Lambda] = \frac{BR[\Lambda_b \rightarrow J/\psi + \Lambda] \times BR[J/\psi \rightarrow \mu^+ \mu^-]}{\epsilon_{b \rightarrow W \rightarrow s} \times \frac{N_{obs}[\Lambda_b \rightarrow \mu^+ \mu^- + \Lambda[\pi p]]}{N_{obs}[\Lambda_b \rightarrow J/\psi[\mu \mu] + \Lambda[\pi p]]}}$$

- The BR of this rare decay ($\sim 2 - 5 \times 10^{-6}$ in SM) can be enhanced by new physics effects ($\times 10$ in SUSY models).\(^5\)

- CDF reported the observation of this decay a few days ago (arXiv:1107.3753v1): using our measurement they found $\mathcal{B}(\Lambda_b \rightarrow \mu^+ \mu^- \Lambda) = 1.73 \pm 0.42 \text{ (stat)} \pm 0.55 \text{ (syst.)}$ and no significant deviation from the SM.

\(^5\) PRD 64, 074001,(2001); PRD 81,056006 (2010); arXiv:0808.2113.
Conclusions

- A new measurement of $f(b \rightarrow \Lambda_b) \cdot B(\Lambda_b \rightarrow J/\psi \Lambda)$ has been performed and is found to be:

 $$(6.01 \pm 0.60 \text{ (stat.)} \pm 0.58 \text{ (syst.)} \pm 0.28 \text{ (PDG)}) \times 10^{-5}$$

- This result represents a reduction by a factor of ~ 3 of the uncertainty with respect to the previous measurement.

- Important measurements such as the branching ratio of FCNC decays ($\Lambda_b \rightarrow \mu^+\mu^-\Lambda$) or the Λ_b polarization can be performed with the tools developed in this analysis.

 Stay tuned, we are working on that!
Final comments: How can we extract \(\mathcal{B}(\Lambda_b \to J/\psi \Lambda) \)?

- We need an external measurement of \(f(b \to \Lambda_b) \). We are not aware of any direct measurement of this quantity.
- \(f(b \to b_{baryon}) \neq f(b \to \Lambda_b) \). Tevatron has observed \(\Xi^-_b, \Sigma_b, \Omega_b \), and recently \(\Xi^0_b \).
- To first approximation,
 \[
 f(b \to b_{baryon}) \approx f(b \to \Lambda_b) + f(b \to \Xi^-_b) + f(b \to \Xi^0_b).
 \]
 - Assume isospin invariance. Then \(f(b \to \Xi^-_b) \approx f(b \to \Xi^0_b) \).
 - It's also observed that
 \[
 \frac{f(b \to B_s)}{f(b \to B_d)} \approx \frac{f(b \to \Xi^-_b)}{f(b \to \Lambda_b)}.
 \]
 - Then: \(\mathcal{B}(\Lambda_b \to J/\psi \Lambda) \approx (11.08 \pm 1.09 \text{ (stat)} \pm 1.06 \text{ (syst)} \pm 3.13 \text{ (PDG)}) \times 10^{-4} = (11.08 \pm 3.48) \times 10^{-4} \).
 - Same assumptions to the W.A would lead to \((8.67 \pm 4.84) \times 10^{-4} \).

- Experimental results favors models which predict a larger value for this branching ratio.

6 arXiv:1010.1589v2