# Hollow Cone Sieve for tops

Vernon Barger, Peisi Huang

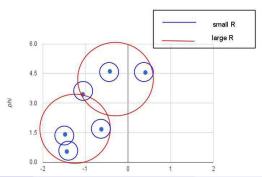
UW-Madison

**DPF 2011** 

#### Outline

- Introduction
  - Fat jet and jet substructure techniques
- Search strategy
  - hollow cone
  - top tagging algorithm
- Results
  - signal and background
  - reconstructed top and W
  - normalized p<sub>t</sub> distribution
  - distance in R between the W boson and nearest b jet
- 4 summary

#### Why boosted tops and fat jets?


- large coupling to the SM higgs
- particles in new physics extension of the SM decay to a single top or top-quark pairs
- The LHC is a top factory: about 160,000 top pairs should have been produced with about 1 fb<sup>-1</sup>.

#### Why boosted tops and fat jets?

- large coupling to the SM higgs
- particles in new physics extension of the SM decay to a single top or top-quark pairs
- The LHC is a top factory: about 160,000 top pairs should have been produced with about 1 fb<sup>-1</sup>.
- Tops will typically be highly boosted, so that the decay products are close to each other.— FATJET

#### Why boosted tops and fat jets?

- large coupling to the SM higgs
- particles in new physics extension of the SM decay to a single top or top-quark pairs
- The LHC is a top factory: about 160,000 top pairs should have been produced with about 1 fb<sup>-1</sup>.
- Tops will typically be highly boosted, so that the decay products are close to each other.— FATJET



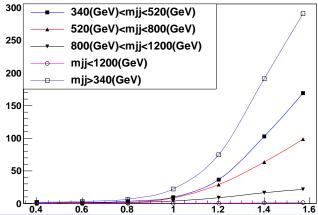
- look into the subjets of a fat jet
- provide a new sight to heavy particles

- look into the subjets of a fat jet
- provide a new sight to heavy particles
- main issue : distinguish the subjets from decay chain from the subjets from soft radiation

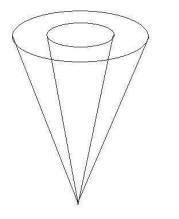
- look into the subjets of a fat jet
- provide a new sight to heavy particles
- main issue : distinguish the subjets from decay chain from the subjets from soft radiation
- what we know about QCD radiation : soft singularity and collinear singularity

 BDRS(Butterworth, Davison, Rubin and Salam) higgs tagger arXiv:0810.0409

- BDRS(Butterworth, Davison, Rubin and Salam) higgs tagger arXiv:0810.0409
- clean the QCD contamination : jet grooming
  - jet filtering Butterworth, Davison, Rubin , Salam arXiv:0810.0409
  - jet pruning Ellis, Vermilion, Walsh arXiv:0903.5081
  - jet trimming Krohn, Thaler, Wang arXiv:0912.1342


- BDRS(Butterworth, Davison, Rubin and Salam) higgs tagger arXiv:0810.0409
- clean the QCD contamination : jet grooming
  - jet filtering Butterworth, Davison, Rubin , Salam arXiv:0810.0409
  - jet pruning Ellis, Vermilion, Walsh arXiv:0903.5081
  - jet trimming Krohn, Thaler, Wang arXiv:0912.1342
- HEPToptagger Plehn, Spannowsky, Takeuchi, Zerwas
- Hopkins Toptagger Kaplan, Rehermann, Schwartz, Tweedie arXiv: 0806.0848

$$R = \sqrt{\eta^2 + \phi^2}$$
 jet size


- top pairs(hadronic channel and semileptonic channel)
  - R = 1.5 2 jets
  - R = 0.6 more jets

$$R = \sqrt{\eta^2 + \phi^2}$$
 jet size

- top pairs(hadronic channel and semileptonic channel)
  - R = 1.5 2 jets
  - ► R = 0.6 more jets
- light jets: number of reconstructed jets doesn't vary with R



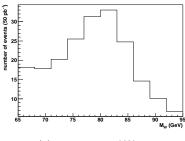
- consider anti-kt algorithm as a "perfect cone" algorithm
- after subtracting a jet of small cone size in the interior
  - some jets remain in the hollow cone : top
  - no jet in the hollow cone : light quark or gluon



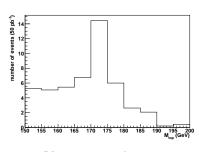
- 1) Reconstruct jets using the anti-kt jet algorithm with R = 1.5 to obtain a set of jets. The number of jets is n<sub>jets</sub>.
- 2) Redo the jet reconstruction, with R = 0.6 (or R = 0.5), to obtain another set of jets.
- 3) Keep the event as a  $t\bar{t}$  candidate if  $n_{jets,R=1.5}=2$  and  $n_{R=0.6}>2$ .
- 4) Go into the 2 jets reconstructed in step 1, find all the subjets for each fat jet. For a fat jet of invariant mass of  $m_j$ , undo the last step of jet clustering to obtain two jets  $j_1$  and  $j_2$ , with invariant masses  $m_{j1}$  and  $m_{j2}$  (  $m_{j1} > m_{j2}$ ). If  $m_{j1} < 0.9 m_j$ , keep both  $j_1$  and  $j_2$ , otherwise, keep only  $j_1$  to add to the subjet list and decompose further. Add  $j_i$  to the jet substructure list if  $m_{ji} < 30$  GeV, otherwise decompose  $j_i$  iteratively. If the total number of subjets is less than 4, reject the event.

- 5) See whether there is a W inside either of the 2 fat jets, if not, reject the event. To do this, look into a fat jet and iterate over all of the 2 subjets configurations. After the jet filtering, if the invariant mass of the 2 subjets falls in the window of 65 GeV to 95 GeV, tag that configuration as a W.
- 6) See whether either of the 2 jets has a subjet can be tagged as a b
  jet. The jet candidates of a W must not be tagged as a b-jet. Keep other
  b-tagged events.
- 7) Any event that survives the above sequence is tagged as a  $t\bar{t}$  event.

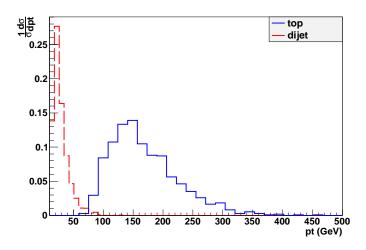
#### backgrounds

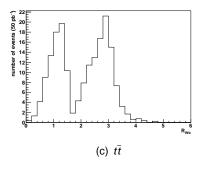

- wb\overline{b}, zb\overline{b}
- wjj, zjj
- dijet can be reliably removed by hollow cone sieve
- trijet can be eliminated by the number of subjets

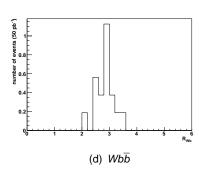
#### cut flow table


- cut 1 : The "hollow cone" sieve. Require  $n_{jets} = 2$  and  $n_{veto} > 2$ .
- out 2 : Total number of subjets ≥ 4.
- cut 3 : A hadronic W can be tagged.
- cut 4 : A b jet can be tagged.
- Assume a 0.5 b-tagging efficiency and a light jet rejection of 1/200.

|                  | cross section(pb) | cut 1(pb) | cut 2(pb) | cut 3(pb) | cut 4(pb) |
|------------------|-------------------|-----------|-----------|-----------|-----------|
| tt               | 100.00            | 12.63     | 7.59      | 5.39      | 4.05      |
| $Wb\overline{b}$ | 239.52            | 63.93     | 1.40      | 0.20      | 0.18      |
| $Zb\overline{b}$ | 124.81            | 23.55     | 1.20      | 0.57      | 0.43      |
| Wjj              | 2458              | 771.4     | 91.9      | 8.00      | 0.08      |
| Zjj              | 7727.5            | 478.3     | 121.3     | 25.5      | 0.26      |


Table: Cut flow table for signal and backgrounds.





(a) reconstructed W mass



(b) reoncstructed top mass







- hollow cone sieve to tag top pairs
- This method tags 4050  $t\bar{t}$  events at 7 TeV in 1 $fb^{-1}$ .
- The resulting ratio of hadronic tops to semileptonic tops is 2.81, which is consistent with the ratio of decay branching fraction of 3.13
- can be used in identifying new physics that has a top in the final state
- can be used for discovering new, relatively heavy and boosted particles at the LHC.