

Richard E. Hughes
The Ohio State University
for
The CDF and DO Collaborations

Tevatron Higgs Combination

Constraints on the SM Higgs Boson

What we know:

Direct search at LEPII:

Mh > 114 GeV/c2 @95% CL

•Precision EWK meaurements (top mass, W mass, etc):

$$M_h = 89.0^{+35}_{-26} \text{ GeV/c}^2$$

 $M_h < 158 \text{ GeV/c}^2 @95\% \text{ CL}$

Higgs Decay

- Low Mass
 - Focus on H→bb
 - Also H→TT and
 H→γγ
- High Mass
 - Focus on H→WW
 - Also H→ZZ

Higgs Production at Tevatron

Higgs Search Challenges

Expected number of events per fb-1 per experiment

Higgs Mass (GeV/c²)	WH→lvbb	ZH→vvbb	ZH→llbb	H→WW→lvlv
120	25	12	4	13
135	10	5	2	26
150	3	2		32

reconstruction/selection/tagging efficiencies ~ 10% in H→bb channels and ~25% in H→WW channels

Combining Channels

 Our goal: "No Higgs events left behind"

 Best sensitivity is obtained through the combination of many independent search channels

WH→lvbb
ZH→vvbb
ZH→llbb
WH/ZH→jjbb

$$ttH\rightarrow WbWbbb$$
 $H\rightarrow \gamma\gamma$
 $H\rightarrow \tau\tau$
 $WH\rightarrow lv\tau\tau / ZH\rightarrow ll\tau\tau$

$$H\rightarrow WW\rightarrow lvly$$
 $H\rightarrow WWW/ZH\rightarrow ZWW$
 $H\rightarrow ZZ$

Combination Methods

- Two statistical approaches used
 - Bayesian: Flat signal prior, credibility intervals
 - Modified frequentist: Loglikelihood test statistic, CLs = CLs+b/CLb
- Better than 10% agreement over whole mass range (~2% on average)
- Operate on binned, final discriminants
 - Poisson statistics assumed for each bin

Bayesian (used by CDF)

$$0.95 = \frac{\int_{0}^{R_{\text{lim}}} L'(data \mid R) \pi(R) dR}{\int_{0}^{\infty} L'(data \mid R) \pi(R) dR}$$

CL_s (used by D0)

$$-2\ln Q = LLR = -2\ln \left(\frac{L(\text{data} \mid s + b, \hat{\theta})}{L(\text{data} \mid b, \hat{\theta})}\right)$$

Systematic Uncertainties

- Include systematic uncertainties on both signal and background
 - Normalization
 - Shape of final discriminations
- Systematics are incorporated in limit setting procedure as nuisance parameters
 - Correlations between different channels is taken into account

In this way,
backgrounds can be
further constrained by
using information from
different channels

Theoretical Uncertainties

- Since we combine searches focusing on different Higgs production and decay modes, cross section limits are given with respect to nominal SM predictions
- This forces us to incorporate theoretical predictions and uncertainties for signal cross sections and branching ratios
- Changed in each iteration to reflect recent theoretical developments

Berger et al., arXiv:1012.4480v2

channel	scale 0	scale 1	scale 2
0 jet	13.4%	-23.0%	-
l jet	-	35.0%	-12.7%
2+ jets	-	-	33.0%

Stewart and Tackmann, arXiv:1107.2117v1

Example Single Channel Result: ttH

- •Search for events that are ttbar like, but with higher jet multiplicity (>=4 jets) and more b-tags (>= 2 b-tags)
- search for a Higgs boson in the range:
 100 GeV/c² 170 GeV/c², using neural networks optimized for each mass point independently.

m_H = 115 GeV Ensemble output, 5+ jets, 3+ tags

Example Single Channel Result: ttH

- Search for events that are ttbar like, but with higher jet multiplicity (>=4 jets) and more b-tags (>= 2 b-tags)
- search for a Higgs boson in the range:
 100 GeV/c² 170 GeV/c², using neural networks optimized for each mass point independently.

m_H = 115 GeV Ensemble output, 4 jets, 3+ tags

Example Systematics: CDF ttH

Systematics

5 jets	STS	STSTST		
	tī	t̄τΗ		
XS_{ttH}	0	10		
$XS_{-}ttbar$	10	0		
LUMI	3.8	3.8		
CDFLUMI	4.4	4.4		
BTAGSF	+11 -16	+9.9 - 13		
CDFMISTAG	+8.1 -3.4	+1.3 -0.5		
CDFJES	+15 -15	-2.7 -8.1		
ISRFSR	+14 -2.0	-1.9 +1.9		

Systematics which can be correlated across the two experiments: signal/background cross sections, luminosity

Systematics which can be correlated within one experiment: portion of luminosity, b-tagging, jet energy scale, etc.

Example Limit Plot: CDF ttH

Combination Inputs

Channel	CDF	Luminosity (fb ⁻¹)	m_H range (GeV/c^2)	
$WH \rightarrow \ell \nu b\bar{b}$ 2-jet channels $4\times (TDT, WH \rightarrow \ell \nu b\bar{b}$ 3-jet channels $2\times (TDT, WH \rightarrow \ell \nu b\bar{b})$,	7.5 5.6	100-150 100-150	
$ZH \rightarrow \nu\bar{\nu}b\bar{b}$ (TDT,LDT,ST)	LD1,S1)	7.8	100-150	71
$ZH \rightarrow \ell^+\ell^-b\bar{b}$ 2×(TDT,LDT,ST)		7.7	100-150	, <u>-</u>
$H \rightarrow W^+W^-$ 2×(0 jets,1 jet)+(2 or	more jets)+(low- $m_{\ell\ell}$)+(e - τ_{had})+(μ - τ_{had})	8.2	110-200	exclusive
$WH \rightarrow WW^+W^-$ (same-sign leptor		8.2	110-200	CACIUSIVC
$ZH \rightarrow ZW^+W^-$ (tri-leptons with 1	jet)+(tri-leptons with 2 or more jets)	8.2	110-200	l -
		8.2	110-200	sub-
$H + X \rightarrow \tau^+\tau^-$ (1 jet)+(2 jets)		6.0	100-150	
$WH \rightarrow \ell \nu \tau^+ \tau^- / ZH \rightarrow \ell^+ \ell^- \tau^+ \tau^-$ (ℓ	$(\ell - \ell - \tau_{had}) + (e - \mu - \tau_{had}) + (\ell - \tau_{had} - \tau_{had})$	6.2	110-150	channels
$WH + ZH \rightarrow jjb\bar{b}$ (GF,VBF)×(TD)	T,LDT)	4.0	100-150	CHarmers
$H \rightarrow \gamma \gamma$ (CC,CP,CC-Conv,CP-Conv)	7.0	100-150	
$t\bar{t}H \to WWb\bar{b}b\bar{b}$ (lepton) (4jet,5jet)	<(TTT,TTL,TLL,TDT,LDT)	6.3	100-150	

5.7

100-150

71
exclusive
sub-
channels

Channel DØ	Luminosity (fb^{-1})	m_H range (GeV/c^2)
$WH \rightarrow \ell \nu bb$ (LST,LDT,2,3 jet)	8.5	100-150
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$ (LST,LDT)	8.4	100-150
$ZH \rightarrow \ell^{+}\ell^{-}b\bar{b}$ (TST,TLDT,ee, $\mu\mu$,ee _{ICR} , $\mu\mu_{trk}$)	8.6	100-150
$H+X \rightarrow \ell^{\pm} \tau_{had}^{\mp} jj$ $VH \rightarrow \ell^{\pm} \ell^{\pm} + X$	4.3	105-200
	5.3	115-200
$H \rightarrow W^+W^- \rightarrow \ell^{\pm}\nu\ell^{\mp}\nu$ (0,1,2+ jet)	8.1	115-200
$H \rightarrow W^+W^- \rightarrow \mu\nu\tau_{had}\nu$	7.3	115-200
$H \rightarrow W^+W^- \rightarrow \ell \bar{\nu} jj$	5.4	130-200
$H \rightarrow \gamma \gamma$	8.2	100-150

(low met, high met)×(2 tags, 3 or more tags)

94 exclusive subchannels

 $t\bar{t}H \to WWb\bar{b}b\bar{b}$ (no lepton)

Example Channels

ZH→I⁺I⁻bb (see M. Kirby's talk Friday)

H→W+W-(see B. Carls' talk Wednesday)

Combining Regions of Similar s/b

$m_H = 165 \text{ GeV/c}^2$

Combined Discriminants

$m_H = 115 \text{ GeV/c}^2$

What a 50 Observation Looks Like

arXiv:1004.1181 Accepted by PRD

CDF Single Top, 3.2 fb⁻¹

Example Individual Channel Limits

CDF/D0 Combined Limits

CDF-only combination

D0-only Combination

New Tevatron Combination

Observed Exclusion: 100-109 and 156-177 GeV/c²

Expected Exclusion: 100-108 and 148-181 GeV/c²

S+B versus B-only Hypotheses

LLR = -2InQ where $Q = L_{s+b}/L_b$

Other combinations: H-bb

- Look at associated production & H → bb decay
- These channels provide best sensitivity in the mass region just above the LEP bounds
- Observation of this decay mode is important for establishing that a Higgs-like signal found in other channels is in fact the SM Higgs

H-bb Compared to Expectations

Observed vs Expected with Injection of Higgs

Fourth Generation Interpretation

- We also interpret our high mass search results in terms of a fourth generation model
- Presence of additional quarks enhances gg→H production by as much as a factor of nine - also modifies Higgs branching ratios
- Look at H → WW/ZZ
 decays Set limits on
 cross section x Br
- Observed exclusion : $124 < m_H < 286 \text{ GeV}$

Fermiophobic Higgs

- "benchmark" Fermiophobic model
- No Higgs coupling to fermions
- SM Higgs coupling to bosons
- Br(h→bb) suppressed by m_b=m²_W
- Br(h→YY)high for low mass (Mh < 110 GeV/c²)
- Only WH, WZ, and VBF production (no gg → h)
- SM production cross section assumed

 $m_H > 114.8 \text{ GeV/c}^2$

Final Steps

- We continue to obtain large improvements in search sensitivity beyond that expected from simply adding more data
- Tevatron is on track to deliver Higgs search results next spring based on the full 10fb⁻¹ datasets that achieve our expected sensitivity goals

Final Steps

- We continue to obtain large improvements in search sensitivity beyond that expected from simply adding more data
- Tevatron is on track to deliver Higgs search results next spring based on the full 10fb⁻¹ datasets that achieve our promised sensitivity goals

Final Steps

Implies Tevatron 95% C.L. exclusion sensitivity over the entire Higgs mass range between 100 and 185 GeV/c² for next spring

Conclusions and Outlook

- Expect to collect over 10 fb⁻¹ of analyzable data by the end of September 2011
- On track to reach 95% C.L. exclusion sensitivity over entire m_H range from 100 to 185 GeV/c² by next spring
- Best current sensitivity to bb Higgs decay mode
- We continue to improve our analyses: 5 new channels this summer, substantial improvement in existing channels

Updated Global EWK Fit

M. Baak, M. Goebel, J. Haller, A. Hoecker, D. Ludwig, K. Moenig, M. Schott, and J. Stelzer, arXiv:1107.0975v1

CL_S Plot

 $CL_s = CL_{s+b}/CL_b$

Confidence Levels

Tevatron Run II Preliminary, L ≤ 8.6 fb⁻¹

Comparison with ATLAS

Event Display

Recent History

Summer 2010

Tevatron Run II Preliminary, <L> = 5.9 fb⁻¹

Spring 2011

Tevatron Run II Preliminary, $L \le 8.2 \text{ fb}^{-1}$ 95% CL Limit/SM Expected Tevatron Observed Exclusion ±1σ Expected ±2σ Expected SM=1March 7, 2011 130 140 150 160 170 180 190 200 $m_H (GeV/c^2)$

SM excluded:

 $158 < m_H < 175 GeV obs$

 $156 < m_H < 173 \text{ GeV exp}$

SM excluded:

 $158 < m_H < 173 \text{ GeV obs}$

 $153 < m_H < 179 \text{ GeV exp}$