Imperial College London

Search for the Standard Model Higgs Boson in Missing Energy and b-jet Final States at the Tevatron

Tim Scanlon

On behalf of the CDF and DØ Collaborations

Outline

• Search overview

- Signal signature
- Background
- Analysis Technique
 - Event selection
 - b-jet identification
 - Multivariate selection
- Limits
- Conclusions

Imperial College London

Delivered > 11.5 fb⁻¹ Recorded > 10 fb⁻¹ Using 8.4 fb⁻¹

[Thanks to all my Tevatron colleagues]

Signal Signature

- Searching for:
 - Large missing energy
 - Two b-jets
 - No reconstructed isolated leptons
- Two dominant channels
 - ≻ Z→vv
 - \succ W \rightarrow lv with missing lepton
- Two searches
 - ➢ D0 8.4 fb⁻¹
 - CDF 7.8 fb⁻¹

Backgrounds

Analysis Strategy

Kinematic event Selection

0.5

Imperial College London

8 10 12 Leading Jet bIMVA OP

0₀

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Imperial College London

NN_{sig}

0.9

London

- Multijet events
 - > MET tends to align with jets
 - Use as handle on MJ events
- Define two regions
 - Signal
 - MET and jets well separated in respect of azimuthal angle
 - ≻ MJ model
 - MET and jets closely aligned
 - Negligible signal
- Events in MJ region used to model MJ in signal region
 - Validated in control region

Multijet

Multijet Control Sample

- Sample dominated by MJ
 - Kinematically similar to signal sample
 - ≻ D0
 - Relax MET cut
 - No MET significance cut
 - > CDF
 - High MET
 - MET aligned with jet
- Validates modelling of MJ background
 - All variables well modelled

- Form sample enriched in W+jets/top events
- Require:
 - D0: Isolated muon
 - CDF: Isolated electron/muon
 - Keep other cuts the same as signal region
- Validates modelling of EW/top backgrounds
 - All variables well modelled

b-Jet Identification

- Tools
 - Secondary vertex
 - Jet lifetime probability
 - Counting impact parameters
 - Combine all information using multivariate technique

b-Jet Identification

- CDF Secondary vertex and lifetime probability
 - Three exclusive tagging channels
 - One single tag/two double tag
- D0 Multivariate (MVA) tagging
 - Very loose single and double tag channels
 - ~80% b-jets, ~10% light-jets
 - Use MVA output as input to final discriminant
 - ~10% gain in sensitivity

• Train multivariate technique to remove large MJ background

- D0 Decision Tree (DT)
- CDF Neural Network (NN)
- Kinematic variables used as input
 - D0 (30), CDF(14)

Example variables:

- MET from jets, tracks and calorimeter
- Relative size of MET
- Relative position of jets/MET
- Event shape

Trained in pretag samples

Multijet Removal

16

Tim Scanlon DPF 2011

Imperial College

London

Final Discriminant

- Train DT (D0) or NN (CDF) to separate signal from signallike backgrounds
- Trained separately in
 - Each b-tagging/jet channel
- Variables
 - ≻ D0
 - Inputs to MJ DT plus btagging and mass related variables
 - > CDF
 - Output of MJ NN, mass, direction of jets and MET related variables

Final Discriminant

Imperial College London

- Uncertainties included on
 - Shape
 - Normalisation
- Dominant uncertainties
 - Jet energy
 - b-tagging
 - Background cross section
 - Luminosity
- Impact reduced by constraining uncertainties during limit setting

• Limits set at 95% CL relative to SM cross section

Expected: 4.0LimitsExpected: 3.0Observed: 3.2@115 GeVObserved: 2.3

Conclusions

- SM Higgs search for missing energy and b-jets is one of the most sensitive at the Tevatron
 - Vital channel in low mass Higgs search
- Large increase in sensitivity of searches
 - ➤ Using up to 8.4 fb⁻¹ of data
 - More intelligent use of b-tagging
 - Loosened kinematic cuts
- Many further improvements in pipeline
 - > More data
 - Reduced systematic errors
 - Increased acceptance

The SM Higgs is running out of places to hide! Watch this space

Backup slides

Tim Scanlon DPF 2011

Low Mass Higgs Search

ww

ZZ

ZV

bb

CC

aq

0.1

10-2

ττ

20

Decay

- Dominant decay to two b-quarks
- Large heavy flavour jet background
- Associated production provides
 more distinctive decays
 - Search for various decay channels of W/Z

B-tagging - (DØ) Certification

Region Definitions

CDF

QCD CR1	EWK CR	QCD CR2	Signal region
No lepton	At least one lepton	No lepton	No lepton
$\not\!\!\!E_T > 70 \ {\rm GeV}/c^2$	$E_T > 35 \text{ GeV}/c^2$	$\not\!\!\!E_T > 35 \mathrm{GeV}/c^2$	$\not\!\!\!E_T > 35 \ { m GeV}/c^2$
$\varphi(j_2, \not\!\!E_T) \leq 0.4$	$\varphi(j_2, \not\!\!\!E_T) > 0.4$	$\varphi(j_2, \not\!\!E_T) > 0.4$	$\varphi(j_2, \not\!\!E_T) > 0.4$
	$\varphi(j_3, \not\!\!\!E_T) > 0.4$	$\varphi(j_3, \not\!\!\!E_T) > 0.4$	$\varphi(j_3, \not\!\!E_T) > 0.4$
	$\varphi(j_1, \not \!\! E_T) > 1.5$	$\varphi(j_1, \not\!\!\!E_T) > 1.5$	$\varphi(j_1, \not\!\!E_T) > 1.5$
		$NN_{QCD} < 0.45$	$NN_{QCD} > 0.45$

TABLE IV: Main kinematic selection requirements for each of the control regions and the signal region.

D0

$$\mathcal{D} = (\Delta \phi(\not p_T, \operatorname{Jet}_L) + \Delta \phi(\not p_T, \operatorname{Jet}_N L))/2$$

Signal region D > $\pi/2$ MJ model region D < $\pi/2$

Imperial College

London

MJ Rejection Variables

CDF

Variable			
Magnitude of $\vec{E_T}$			
Magnitude of $\vec{p_T}$			
$E_T/\sqrt{\sum E_T}$			
E_T/H_T			
$ \not\!\!H_T / \not\!\!\!E_T$			
$M(ec{E_T},ec{j_1},ec{j_2})$			
$\Delta \varphi$ between $\vec{E_T}$ and $\vec{p_T}$			
Maximum of $\Delta \varphi$ between any two jets			
Maximum of ΔR between any two jets			
Minimum of $\Delta \varphi$ between the $\vec{E_T}$ and $\vec{j_i}$			
Minimum of $\Delta \varphi$ between the $\vec{p_T}$ and $\vec{j_i}$			
$\Delta \varphi(\vec{j_1}, \vec{j_2})$ in the 2-jet rest frame			
Sphericity			
Centrality			

D0

Variables used in the MJ DT and in the SM DT			
$\Delta \eta(j_1, j_2)$			
$\Delta \phi(j_1, j_2)$			
$\Delta R((j_1, j_2))$			
$\eta \text{ of } j_1$			
$n \text{ of } j_2$			
p_T weighted $\Delta R(j_1, j_{all})$			
p_T weighted $\Delta R(j_2, j_{all})$			
E_T			
E_T significance			
$\Delta \phi(\vec{E}_T, j_1)$			
$\Delta \phi(E_T, j_2)$			
$\Delta \phi(E_T, dijet)$			
$\min \Delta \phi(E_T, j_{all})$			
$\max \Delta \phi(E_T, j_{all}) + \min \Delta \phi(E_T, j_{all})$			
$\max \Delta \phi(E_T, i_{p,1}) - \min \Delta \phi(E_T, i_{p,1})$			
H_T (vectorial sum of $i_{all} p_T$)			
H_T/H_T (with H_T the scalar sum of $i_{all} p_T$)			
Asymmetry between E_T and H_T			
E_T component along the thrust axis			
E_T component perpendicular to the thrust axis			
Sum of the signed components of the dijet and recoil momenta along the thrust axis			
Sum of the signed components of the dijet and recoil momenta perpendicular to the thrust axis			
Dijet p_T			
Scalar sum of j_1 and $j_2 p_T$			
Centrality (ratio of the scalar sum of j_1 and j_2 p_T to the sum of j_1 and j_2 energy)			
Effective mass (sum of E_T and of the scalar sum of j_1 and $j_2 p_T$)			
θ angle of j_1 boosted to the dijet rest frame			
θ angle of the dijet system			
Polar angle of j_1 boosted to the dijet rest frame with respect to the dijet direction in the laboratory			
Azimuthal angle of j_1 boosted to the dijet rest frame with respect to the dijet direction in the laboratory			
Color flow j_1			
Color flow j_2			

DO MJ DT Variables plus

Dijet mass Dijet transverse mass $j_1 p_T$ $j_2 p_T$ H_T $j_1 b$ -tagging output $j_2 b$ -tagging output

CDF

 $\begin{array}{c} \text{Variable}\\ \text{Invariant mass of the two leading jets in the event } (M_{jj})\\ \text{Invariant mass of } \vec{E_T} \ , \ \vec{j_1} \ \text{and} \ \vec{j_2}\\ \text{Difference between the scalar sum of transverse energy of the jets } (H_T) \ \text{and} \ \vec{E_T}\\ \text{Difference between the vector sum of transverse energy of the jets } (\vec{H_T}) \ \text{and} \ \vec{E_T}\\ \text{The output of the TRACKMET neural network}\\ \text{Maximum of the difference in the } \eta - \phi \ \text{space between the directions of two jets, taking two jets at the time}\\ \text{The output of } NN_{QCD} \end{array}$

TABLE VI: Input variables to the final discriminant neural network.

Imperial College London

Tim Scanlon DPF 2011