

Early Neutrino Data in the NOvA Near Detector

Minerba Betancourt University of Minnesota/URA Visiting Scholars-Fermilab For the NOvA Collaboration

> DPF Meeting/ Providence RI 08-11-2011

Near Detector On the Surface (NDOS)

- NOvA Near Detector prototype, commissioning ongoing
- located on the surface at Fermilab
- Detector made of rigid plastic(PVC)modules
- Filled with liquid scintillator
- Uses Avalanche photodiode (APD)

- Prototype provides essential information on.
- •Assembly technique
- •Scintillator filling
- •Light yield
- •APD installation and functioning
- •Electronics installation and functioning
- •DAQ functioning

Taking data from two neutrino beams

Physics goals for NDOS

- Calibrate the detector and determine composition of the beam
- Investigate the detector sensitivity to cosmic ray background
- Study response of the detector to electron neutrinos
- Measure the rate of neutrino interactions for the quasi-elastic (QE) interactions

• NDOS energy spectrum has a peak around 2GeV, an ideal energy to disentangle current cross section measurements

- Proton tracks are visible, and vertex activity if tracks are not detected
- Measure v_{μ} QE cross section at 2GeV
- QE studies in NDOS will help to develop the analysis for the θ_{23} and Δm_{32}^2 NOvA measurements

More details see Gavin's talk and Nick's talk

• NDOS will collect data for a year

2x10 ²⁰ POT 20 tons	NuMI Neutrino	NuMI Anti-Neutrino	Booster Anti- Neutrino
v_{μ} +anti- v_{μ} CC	4500	3300	735
In 2GeV peak	1500	800	
v_e +anti- v_e CC	200	160	10
NC	2000	1600	392

• We will have a significant sample of v_{μ} CC QE

Detector during commissioning

Detector during commissioning

Neutrino signal in NDOS

Time distribution for NuMI neutrinos

Selection: Require to have 4 hits in each view Fiducial|x|<110cm, y<140cm and z>50cm and z<770 cm

Time distribution for Booster neutrinos

Selection: Require to have 4 hits in each view Fiducial |x|<110cm, y<140cm and z>50cm and z<770cm

Reconstructed particle tracks angle with respect to the beam direction Neutrino Run AntiNeutrino Run Number of tracks Number of tracks 300 Data in time 60 Data in time Data out of time 250 Data out of time 50 200 40 150 30 100 50 10 8 0 0 6 cos θ_{NuMI} cos θ_{NuMI}

5.6x10¹⁹ protons on target during antineutrino run, 1001 NuMI events and 69 cosmic BG

8.4x10¹⁸ protons on target during neutrino run, 253 NuMI events and 39 cosmic BG 8/11/2011 Minerba Betancourt/University of Minnesota

Booster Beam Neutrino Interactions

Reconstructed particle tracks angle with respect to the beam direction

AntiNeutrino Run

3x10¹⁹ protons on target during antineutrino run, 222 booster events and 92 cosmic BG

Track length for the fully contained events

Antineutrino Run

MC - fully contained events normalized to Data Exposure

	NuMI	Cosmic BG	MC
Fiducial	1001	69	861
Fully contained	184	12	187

Fully contained. Events with vertex and end of the track inside of fiducial region

- We have a selection criterion to find neutrino candidates and separate them from cosmic background
- Developing a selection to identify the v_{μ} charge current CC interactions using Monte Carlo MC

8/11/2011

• Understanding the background for CC interactions

MC Events

- Currently developing a selection criterion to select charge current CC interactions from neutral current interactions NC
- Base on a simple likelihood method which uses as input three probabilities density functions (PDFs)
- An event separation is defined.

 $S = (ln(P_{CC}) - ln(P_{NC}))$

Where P_{CC} or P_{NC} are the probabilities $P_{CC,NC} = \prod_{i=1}^{n} f_i(x_i)_{CC,NC}$ and $f_i(x_i)$ are the individual PDFs for CC and NC

Using Antineutrino MC

Distributions normalized by area

Variables after Pre-selection cuts: Events in fiducial region, nhitx>4 and nhity>4 and cosNuMI>0.7

Using fully contained events and partially contained events

8/11/2011

Event Separator

Selecting CC interactions

As an example a cut above –1.5 gives a Purity 94% and Efficiency 80%

An alternative visual scanning method was used to select CC events, this method gives 92% of purity and 85% of efficiency

- Preliminary CC selection method, this method will improve as the quality of the event reconstruction method improves
- Improve the π^{+,-} rejection.
 Using Michel electron
- Identify charge current quasi elastic interactions

- NOvA has a working detector, taking neutrino and cosmic data
- We are taking data for NuMI and Booster neutrino beams
- Developing analysis methods.
 Currently developing a CC selection
- Near Detector will be built and will collect much higher statistics

CC Interactions after Pre-selection Cuts

Neutrino production Muon Monitors Absorber Target **Decay Pipe Target Hall** μ^+ 120 Ge protons From π **Main Injector** Horns π 30 m 10 m 675 m Rock 5 m 18 m 210 m 12 m

- 120 GeV protons from the Fermilab Main Injector hit a 1 m graphite target, producing pions (π) and kaons (K)
- Magnetic horns to focus charged π and K
- Nova experiment uses off-axis design (14mrad off-axis angle) and medium

