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Short History of the Tevatron 
 1967 - Fermilab was founded as NAL (National Acc.Lab); FNAL since 1974 
 Pre-Tevatron era of Fermilab 

 1971 - Booster achieves 8 GeV 
 1972 - Main Ring achieves 200 GeV  & 500 GeV in 1975  
 1977 - b-quark discovery  

 Tevatron 
 1972 - Study of SC magnets 
 1974 – official start of 1000 GeV accelerator study (Energy 

Saver/Doubler) 
 1983 – 500 GeV achieved 
 1983–2000 – eight fixed target Runs (400 -> 800 GeV) 

 Tevatron collider 
 Collisions were anticipated from the very beginning  

 1977 publication by Wilson in Physics Today 
 1982 – Tevatron collider scheme is established 
 1982-1985 – Antiproton source construction 
 1985 – Installation low  quads and first collisions in CDF col. point  
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Short History of the Tevatron (continue) 
 Tevatron collider Runs 

 First data taking: Jun. 1988-Jun.1989, ∫Ldt=0.005 fb-1
 to CDF, 0.9 TeV 

 Run I: Aug.1992-Feb.1996, ∫Ldt=0.18 fb-1 to CDF & D0, 0.9 TeV 
 Run II: Mar.2001–Oct.2011, ∫Ldt=11.5+0.5 = 12 fb-1(67Run I), 0.98 TeV  
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Luminosity Progress in the Course of Run II  
 Tevatron was comparatively mature machine at the Run II beginning 

 10% of design luminosity (35·1030) achieved in 1.5 years 
 LHC, new machine 10% of design Lpeak achieved in ~1.5+1 years 

o Luminosity integral grows slower due to reliability 
 Exponential luminosity growth during 8 years of commissioning  

 Doubling time – 17 months  
 2007-2009 – same Lpeak but higher pdN / dt  and better reliability 
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The layout of transfer lines 

 7 accelerators and large 
number of transfer lines 
 Linac, 0.4 GeV 
 Booster, 0.4–8 GeV 
 Main injector, 8-150 GeV 
 Debuncher,  8 GeV 
 Accumulator,  8 GeV 
 Recycler, 8 GeV 
 Tevatron, 980 GeV 
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Major Developments in Accelerator Physics/Technology 
 SC magnets 

 Tevatron –> LHC IP quads -> IP quads for the LHC upgrade 
 Linear optics 

 High accuracy optics with accounting of strong coupling in Tevatron 
 Optics redesign based on real elements and optimal ring use 

 Stochastic cooling 
 Quantitative description of cooling 
 Correction of transfer function with equalizers   

 Electron cooling 
 High voltage cooler, 4.3 MeV - an order of magnitude higher than other 
 First weakly magnetized cooling + Strongly coupled beam transport 

 Beam instabilities 
 Impedances of thin wall chambers and laminated chambers 
 Beam instabilities with space charger 

 Intrabeam scattering 
 Coupling; Common description of single and multiple scattering 

 Luminosity evolution model and Beam-beam effects 
 Tracking, effect of second order chromaticity 
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Coupling between two or more Degrees of Freedom 
 Extension of Mais-Ripken representation is used 

    1 2
1 1 2 2Re 2 2i iI e I e   x v v  

 Amplitudes are , ,2kx ky k kx kyA I   
 1,2 characterize the phase 

shift between x & y 
 u is the coupling parameter 

 u=0.5 – 100% coupling 

 The mode emittances, 1,2 1,22 I  , are 
invariants of motion 

 Same as for uncoupled motion 
 Shape of 4D phase space ellipsoid 

uniquely determines the eigen-
vectors and Twiss parameters 

 There are 4 parameters which 
characterize the coupling 
 Tune split is frequently used but zero tune split  zero coupling  
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X-Y coupling in Tevatron  
 At the Run II beginning Tevatron 

had very large coupling 
 uncompensated tune split ~0.4 

 The reason was a displacement of 
SC coils in dipoles relative to the 
steel core due to compression of 
thermo-isolating  coil supports by 
~150 m 
 It makes the skew-quad field in dipoles of Gsa/B0~1.4·10-4 for a=2.54 cm 
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X-Y coupling in Tevatron (continue)  
 The problem was exacerbated by a partial removal of main family 

skew-quads in vicinity of the IPs which made long sections without 
coupling (112 dipoles without nearby skew-quad) 

 The coupling was corrected by shimming dipoles which did not have 
nearby skew-quads in the summer 2003 shutdown 
 It reduced the emittance growth at transfers 
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 Later all dipoles were shimmed.  
 It reduced current of main skew-quad bus but did not reduce 

coupling coming from scatter of skew-quad components in dipoles   
 It looks like that the coupling has not been making negative impact 

on the machine optics with one exception - the emittance growth at 
transfers  
 Before and after coupling correction we operated Tevatron at 

small tune split (Q < 5·10-3) 
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Optics measurements 
 Methods  

 Orbit response (also called differential orbits) 
 It is the only method for transfer lines 
 Two incarnations 

 Minimal data acquisition – transfer lines – “manual” analysis 
 Large data redundancy available in rings makes possible 

automatic data analysis yielding much better accuracy  
 One measurement normally takes 0.5 – 2 hours 

 Turn-by-turn 
 Much faster data acquisition (can be used during acceleration) 
 Significant advance but did not achieve the same sophistication 

 Measurements of sextupole component distribution around the 
ring were attempted but did not achieve required accuracy  

 Development of the optics measurements techniques 
 Only orbit response with manual data analysis was available at the Run 

II beginning 
 Automatic data analysis with SVD appeared in 2004 as result of 

collaboration with ANL 
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Orbit Response with “Manual” Data Analysis (continue) 
 Build a model means finding 

the fudge factors for quad 
strengths so that 4 
differential orbits and 
dispersion(s) would match 
the measurements 

 If coupling is important quad 
rotations have to be also 
introduced  

 Adjustments are done by a 
person 
 There is a considerable 

freedom =>the problem 
cannot be performed by 
software with 
”reasonable” intellect 

 Errors of differential BPM response complicate analysis (up to 10% )  
 Any “good” solution makes good representation of the optics!!!  
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LOCO (Linear Orbit from Closed Orbit = Orbit Response)_  
 Data analysis is based on SVD inversion of response matrix 

 We extended the algorithm developed by V. Sajaev of ANL 
 The extension included 

 Fully coupled x-y treatment of betatron motion 
 Addition of dispersion measurements to the fit  

 Software also includes a correction to 
dif. orbit due to energy change 
related to the orbit length change  

 Good initial approximation (made 
manually) was important for 
convergence  
 Design model did not converge 

 Data analysis is not completely 
automatic – a good physicist is still 
required 
 SVD cut-off, choice & number of 

quads & skew-quads for 
correction, etc. 

 
The spectrum for Tevatron 

SVD cut-off was typically chosen at 1, 
which corresponds to 600-650 singular 

values. 
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Orbit Response Measurements in Tevatron 
 New Tevatron BPMs significantly improved accuracy (5015 m) 

 
Old Tevatron BPMs      New Tevatron BPMs 

RMS difference (mm) between the measured and modeled orbit vs. BPM name. Top – horizontal 
orbit, bottom - vertical orbit. Amplitude of dif. orbit is ~5 mm. 
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Second order chromaticity correction 
 Beta-beating excited by a single quadrupole for an off-momentum particle can be 

described by the formula  

     
 

 
    0 0
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1 cos 2 2 , 1,2 ,

2sin 2
kk

k k k k
k k

p p QL
s s Q k x y
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  
      . 

 The contribution to second-order chromaticity of the horizontal tune derived from 
the perturbation theory is given by the following expression 
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Chromatic beta-function vs. azimuth: left – entire machine starting at F0, right – in vicinity of CDF. 

Blue line - measured, red - model, black - proposed correction.  
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 Splitting chromaticity quads into families resulted in a suppression 
of beta-function chromaticity and, consequently, the second order 
chromaticity 
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Dependence of the vertical betatron tune on particle momentum in the collider mode 
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Optics Corrections in Antiproton source 
 Optics corrections both in Debuncher and Accumulator were aimed 

to maximize their acceptances for given aperture limitations set by 
the stochastic cooling pickups and kickers 
 Balancing beta-functions in nearby aperture limitations was used 
 It also improved performance of transverse stochastic cooling  
 Optics redesign in Debuncher required shuffling quad shunts  

 The slip-factor was adjusted in Accumulator to optimize the 
stacktail 
 The “dual-optics” operation was introduced and used before 

Recycler 
commissioning 
(two optics 
modes were 
optimized for 
stacking and 
IBS) 

Beam envelopes in the pickup straight of the Debuncher 
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Electron Cooling 
 Fermilab made next step in electron cooling technology 
 Main Parameters 

 4.34 MeV pelletron  
 up to 0.5 A DC electron beam with radius ~4 mm 
 Magnetic field in the cooling section ~100 G 
 Interaction length – 20 m (out of 3319 m of Recycler length) 

 The cathode is 
immersed in the 
longitudinal 
magnetic field 
 Two mode 

emittances are 
different in 
~103 times 

 Optics is build 
from rotationally 
invariant blocks 
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top – the 4D beta-functions;  
bottom – the phase advances (1 & 2) and the eigen-vector phases (1 & 2) 
divided by 2; 1 & 2 = ±(2)0.25 (±90 deg.) correspond to circular modes 
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Precooling in Debuncher and Stacking & Cooling in Accumulator 
 Debuncher 

 Each of 3 systems (H + V 
+ L) has 4-8 GHz band 
split into 4 sub-bands 

 Accumulator 
 Core cooling  

 H & V – 4-8 GHz 
 Longitudinal: 2-4 GHz 

and 4-8 GHz 
 Stacktail - 2-4 GHz 

 moves injected 
antiprotons to the core 

 Accurate quantitative 
description was essential for 
determining the upgrade path 
 It was important to understand an effect of band overlap on the 

performance of different systems and beam heating mechanisms   
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Stacktail system 
 Very complicated system – its improvement was one of most challenging 

beam physics problem in Run II  
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 System has 3 pickups which signals are added with right gains and delays 

and come through 3 notch filters. It makes the exponential gain profile in 
the stacktail area (Van der Meer solution) 

    )/exp(, dxxGxG     

 The maximum flux         
2

max 0 d effJ T x W     
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Test Stacktail equalizer 

f=2.2 GHz
Q=5

f=2.77 GHz
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f=3.9 GHz
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Test Equalizer specifications 
 Phase part corrects phase 
 Amplitude part corrects amplitude so 

that to get the desired total 
amplitude  
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 Final equalizer has 5 resonators and 
one-stage amplitude correction 
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Stacktail equalizer (continue) 
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Dependence of stacktail gain on frequency before and after installation of the equalizer 
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Transverse core heating  
 Stacktail is a longitudinal system  

 However its kickers also produce transverse quadrupole kicks  
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 The problem is mitigated by 90 rolls of nearby kickers 
VV V VVV V VVV V VVV V VH H H HH H H HH H H HH H H H

Core longitudinal, 2-4 GHz  
 Large betatron phase advance along kicker straight results in 

insufficient compensation and transverse emittance growth due to 
 Not perfectly zeroed dispersion in the kicker straight 
 Offset of kicker  electrical center relative to the beam center 

 kicker electrical center varies with frequency 
 Parametric heating (kickers at ends heat more) 

 It is addressed by swapping core cooling and stack-tail 
kickers and switching of 3 of 31 kickers 
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Luminosity Evolution Model 
 Luminosity evolution is driven by 

 Single and multiple intrabeam scattering (IBS) 
 Elastic and non-elastic scattering on counter-rotating beam  
 RF noise   
 Elastic and non-elastic scattering on the residual gas 
 LHC -  Emittance growth due to e.-m. noises and  damper 
 Beam-beam effects  

 The model is based on ODEs (N1,2, x,y(1,2), s(1,2)) 
 Details of evolution for longitudinal distribution came from 

parameterization  of solution of integro-differential equation 
describing single and multiple IBS 
 Was build for Tevatron and was recently updated for the LHC 

 The model  
 was the base for the Tevatron luminosity evolution scenario (2003) 
 helps in understanding of the machine and beam-beam effects 
 Recently was used to look the LHC luminosity optimization 
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Influence of Beam-beam effects on beam parameters evolution 
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Model Predictions for the LHC (fill 1852, June 2011) 
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Beam-beam effects 
 Very different from electron-positron colliders 

 No damping 
 Emittance growth is driven by IBS and other heating mechanisms  

 Beam-beam effects are a small perturbation for real collider param. 
 No analytical solution -Tracking is only a way to achieve sufficient 

accuracy ( predictive power); LifeTrack, D. Shatilov, Novosibirsk 
 Diffusion (IBS, etc.) is a major driver for luminosity evolution 

 For Tevatron parameters coherence for 12-th order resonance 
disappears after ~50,000 turns 

 Weak-strong simulations, >106 turns  
 Chromaticity of tunes and beta-functions is important 
 Non-linearity of beam-beam force is much stronger than the lattice 

non-linearities inside aperture available to a beam 
 Normally we use a smooth lattice approximation between IPs 

 Accurate strong-strong simulations cannot be done for ~106 turns  
 They are used for coherent stability check only 
 Impedance contribution has to be taken into account 

 Simulations were important to support the upgrade choices made 
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Conclusions 
 Accelerator physics developments in the course of Run II have been 

absolutely essential for its success 
 Same as operation, engineering, etc. 

 Diverse contributions were required 
 they will certainly affect many future developments  

 Good team to run Tevatron at the edge of its ultimate performance 
was also essential 
 Collaboration of many devoted individuals 
 Communications at parallel levels 

 Most of work had to be done with minimum effect on collider 
operation (minimize interruptions, recabling, new PS, etc.) 
 Careful analysis of each upgrade/improvement helped to avoid 

unnecessary work 
 This presentation covers comparatively small part of the entire work 

required to achieve presentTevatron performance  
 


