Probing hot and dense nuclear matter with particle correlations and jets at RHIC

Hua Pei
University of Illinois at Chicago

The central goal of RHIC/LHC heavy-ion program

--

Quantitative study of the phases of QCD

The natural starting point to study the bulk properties:

Begin from single particles observables and extract physics characters:

T,
$$C_s$$
, \hat{q} , η , ζ , etc.

Medium in the eyes of R_{AA}, from RHIC to LHC

- Mesons, whether of light quarks or charm/bottoms, showing similar suppression patterns,
- On contrary to "baryon anomaly" and direct-γ.
- A strong indication of medium effects.

- Despite more than a factor of 20 higher energy, the R _{AA} are very close for RHIC and LHC at 5<pT< 20 GeV/c
- ••The same Quark soup cooked at LHC and RHIC?

Jets (including the correlation functions as proxies) as the double-edged sword

Phys. Rev. Lett. 104, 252301 (2010)

- Jets, originated from the hard-scattering partons, are considered to be a good probe of medium.
- These scatterings happen at the early age of QGP formation, and partons have a chance of carrying the information of medium via the interactions.

STAR (arXiv:1010.0690)

- However, RAW correlations contain not only jets, but bulk medium information: event plane, flow v_n .
- They exist in both central A+A (left plot) or mid-central (right plot).

Flow: the primary factor(s) to disentangle

Phys. Rev. C 77, 011901(R) (2008)

Mach-cone? Ridge?

- All plots here already have v₂ subtracted.
- Are these modified jets production? Or they are medium themselves coincide with trigger particles?
- There are more v_n than that v_2 to modulate the correlation functions?

Phys. Rev. C **80** (2009) 64912

Azimuthal anisotropy

$$\frac{dN}{d(\phi-\Psi_{\rm RP})} \propto 1$$
 Softening of $+2v_1\cos{(\phi-\Psi_{\rm RP})}$

$$+ \ 2a_1\sin{(\phi-\Psi_{
m RP})}$$
 Chiral magnetic effect ?

Partonic d.o.f, thermalization ? $+ 2 v_2 \cos{(2\phi - 2\Psi_{
m RP})}$

 $+\ 2v_3\cos{(3\phi-3\Psi_{
m RP})}$ Initial geometry fluctuations ?

Before v_3 era: $\Delta \eta - \Delta \eta$ pair densities: ridge, jet-like, and their cross-item

"No correlation is found between production of the ridge and production of the jet-like particles, suggesting the ridge may be formed from the bulk medium itself." from *Phys. Rev. Lett.* 105 (2010) 22301

Higher v_n from 2 particle correlations

P. Sorensen QM11

n=1 shows large difference between LS and CI: charge and momentum conservation?

n=3 exhibits effects of elliptic overlap geometry.

n=4 and larger show 1/N dependence typical of non-flow correlations.

From mid-central to central, $v_3^2\{2\}$ follows an $N_{part}\epsilon_{3,part}^2$ trend, similar to v_2 .

Q-Cumulants: A. Bilandzic, R. Snellings, S. Voloshin, Phys. Rev. C 83, 044913 (2011)

These p_T integrated v_n are already exciting. Can they help us on the intermediate p_T correlations?

PH***ENIX**

arXiv:1105.3928

central

 $V_3 = V_2$

Theory expectations of v_n at intermediate p_T

0.25

0.15

0.1

Au+Au 200GeV

 $V_4\{\Psi_a\}$

In a system where space-momentum correlations develop, the initial density fluctuations can manifest in momentum space.

For b=0 fm, at low p_T , v_n drops with n, but at intermediate p_T , $v_3 \sim v_2$, agree with RHIC data.

It's possible to reproduce the "ridge" with these v_n , without need of jets.

J.Takahashi, B.Tavares, W.Qian, F.Grassi, Y.Hama, T.Kodama & N.Xu and many others

Correlation functions with v_n modulation

ShinIchi Esumi, QM11

- Great success in central Au+Au.
- The mach-cone is mostly gone.
- Remaining medium effect exists.

The $v_2 + v_3$ isn't the whole world yet

 v_2 subtracted di-hadron correlations: v_2 estimated using Ψ_{EP} (high $|\Delta\eta|$ from trigger)

- It's measured that Ψ_2^{EP} and Ψ_3^{EP} are weakly correlated.
- Thus, the fact that the v_2 modulations subtracted correlation shapes still keep strong 2^{nd} order event plane Ψ_2^{EP} dependence, can't be explained by pure v_3 .
- While the measured v_2 and v_3 have weak $|\eta|$ dependence from long $\Delta\eta$ away Ψ_2^{EP} and Ψ_3^{EP} , the factorization of v_2^2 and v_3^2 need further investigation.
- Higher order v_n needed. Or, is it due to those long $\Delta \eta$ non-flow contribution?

Next task of v_n modulation: PID

As those measurement in R_{AA} , it's necessary to measure and apply PIDed v_n .

We can already see the kE_T and n_q scaled v_3 , up to intermediate p_T region. (Also reported at LHC)

This is consistent with v_2 , showing a consistent partonic flow picture.

Next task of v_n modulation: PID

As those measurement in R_{AA} , it's necessary to measure and apply PIDed v_n .

We can already see the kE_T and n_q scaled v_3 , up to intermediate p_T region. (Also reported at LHC)

This is consistent with v_2 , showing a consistent partonic flow picture.

Thus the correlation functions are expected to show an evident mass splitting effect, based on higher order v_n modulation pattern:

Ridge? Cone?

The v_n modulation to correlation with PID

As those measurement in R_{AA} , it's necessary to measure and apply PIDed v_n .

We can already see the kE_T and n_q scaled v_3 , up to intermediate p_T region. (Also reported at LHC)

This is consistent with v₂, showing a consistent partonic flow picture.

Background subtracted correlations

Thus the correlation functions are expected to show an evident mass splitting effect, based on higher order v_n modulation pattern:

Ridge? Cone?

Yes they do!

Centrality (in)dependence of v_n

- A much weaker centrality dependent of v_3 is observed at RHIC (LHC), contrary to v_2 .
- This is commonly considered an evidence of v₃ is caused by initial state density inhomogeneity, as were predicted by such models.
- → Current leading explanation.

arXiv: 1105.3928

More v_n work are needed, when centrality combined with PID

The baryon/meson splitting are centrality dependent.

- The baryon/meson splitting, and baryon "anomaly" enhancements are centrality dependent.
- If v_3 is partonic flow as indicated from RHIC (and LHC), then is this weak centrality dependence of v_3 at intermediate p_T due to the convolution of $\varepsilon^2_{3,part}$, PIDed v_3 (proton v_3 > pion v_3) and "baryon anomaly"?
- Will v₃ modulation produce this PID ordering in mid-central Au+Au? (work in progress)
- Or is this PID ordering due to non-flow effect coming to work at inter-mediate p_T region? **Jets?**

- The high- $p_T v_2$ measured at RHIC isn't approaching zero.
- Here the collective effect is small. Instead, the v_2 are dominated by jet source (e.g., jet quenching in medium).
- Do jets also induce v₃?

Phys. Rev. Lett. 105, 142301 (2010)

H. Pei DIS2011

Red: Same-side, Blue: Away-side

- The high- $p_T v_2$ measured at RHIC isn't approaching zero.
- Here the collective effect is small. Instead, the v_2 are dominated by jet source (jet quenching in medium?).
- Do jets also induce v₃?
- No v₃ observed in the "jet-like" correlation (v₂ subtracted) yet.

 $Trig_1E_T \in [10, 15]GeV$ $Trig_2p_T \in [4, 10]GeV$ $assocp_T \in [1.5, 10]GeV$

 Back-to-back high-p_T trigger are selected to tag "jet-like" events.

d+Au

 Δ

v2 modulation subtracted.

 $\Delta \phi$ ($|\Delta \eta| < 1.0$)

Phys. Rev. Lett. 105, 142301 (2010)

A. Ohlson QM11

- The high-p_T v₂ measured at RHIC isn't approaching zero.
- Here the collective effect is small. Instead, the v_2 are dominated by jet source (jet quenching in medium?).
- Do jets also induce v₃?
- No v₃ observed in the "jet-like" correlation (v₂ subtracted) yet.
- No v_3 observed in the "jet-hadron" correlation.

Phys. Rev. Lett. 105, 142301 (2010)

Cold nuclear matter effect

- Forward (FMS) π^0 trigger particle
- Mid-rapidity (BEMC/TPC) π^0/h^{\pm} associated particle
- Includes efficiency and background corrections
- Similar $\Delta\eta$ between trigger/associated as those v_3 measured in broad $|\eta|$.

Shown by Chris Perkins on DIS2011, ref. Ermes Braidot (arXiv:1102.0931)

- No significant broadening from p+p to d+Au
- No hints of away-side peak disappearance
- As for now, the observed long $\Delta\eta$ higher-order v_n are still heavy-ion specific.

Summary and outlook

- Recent results from RHIC on the "ridge" and the away-side correlation structure are presented in central A+A collisions.
- Higher order Fourier harmonics v_n based on initial geometry fluctuation, in addition to the common v_2 , make an important role in disentangle different sources of physics. These v_n successfully reproduce the correlation structures (ridge/cone) with little help from jets-medium interaction.
- More quantitative analysis/prediction on these higher order v_n are necessary, including their dependence on pT, $\Delta\eta$, centrality, and PID, etc.
- The hadron correlations with multiple high-energy triggers (as proxies of jets) and/or fully reconstructed jets show no signal of higher order v_n , on contrary to the high- p_T v_2 , also supporting assumption of v_2 and higher order v_n from different sources.
- No evident cold-nuclear-matter effect observed for high order v_n at current stage.

Back up

Phys. Rev. C 78, 014901 (2008)

0-20% Au+Au (left) and 20-40% Au+Au (right). The "cone" appear at the same positions, showing very weak trigger/associate pT and centralities.

The Flow probe

Azimuthal Distribution

$$f(\varphi) \propto \left(1 + 2\sum_{n=1}^{+\infty} v_n \cos\left[n(\varphi - \psi_n)\right]\right)$$

$$\langle e^{in\varphi} \rangle \equiv \int_0^{2\pi} e^{in\varphi} f(\varphi) d\phi = v_n e^{in\psi_n}$$

$$v_{\rm n} = \left\langle e^{in(\varphi_p - \Psi_n)} \right\rangle, \quad n = 1, 2, 3...,$$

$$\frac{dN^{\text{pairs}}}{d\Delta\varphi} \propto \left(1 + \sum_{n=1}^{\infty} 2v_n^a v_n^b \cos(n\Delta\varphi)\right)$$

For smooth profile $\varphi \rightarrow \varphi + \pi$

Odd harmonics = 0

For "lumpy" profile $\varphi \neq \varphi + \pi$

Odd harmonics $\neq 0$

Higher v_n from 2 Particle Correlations

n=1 shows large difference between LS and CI: charge and momentum conserv?
n=3 exhibits effects of elliptic overlap geometry
n=4 and larger show 1/N dependence typical of non-flow correlations

Higher v_n from 4 Particle Correlations

 v_n {4} consistent with zero for odd terms. Consistent with v_3^2 {2} being due to non-flow and/or with $v_n \propto \epsilon_{n,part}$: for $v_n \propto \epsilon_{n,part}$, v_n {4} $\propto \epsilon_{n,std}$

R.S. Bhalerao and J-Y.Ollitrault, Phys.Lett.B641:260-264 (2006) S. Voloshin, A. Poskanzer, A. Tang, G. Wang, Phys.Lett.B659:537-541 (2008)

For 0-2.5% central $v_2\{4\}\approx 0$ indicates elliptic shape is nearly gone. We'll look at the shape of $v_n^2\{2\}$ vs. n for nearly symmetric collisions

$v_3^2{2}$ vs $\Delta\eta$ and Non-flow

Initial state density correlations may drop with Δy : interesting physics $\sigma_{\Delta y}^{-1}/\alpha_s$?

Dusling, Gelis, Lappi & Venugopalan, Nucl. Phys. A 836, 159 (2010)

Petersen, Greiner, Bhattacharya & Bass, arXiv:1105.0340

Fit with a wide and a narrow peak. Wide peak amplitude first drops with 1/N but then deviates from trend near N_{part} =50. Above that it follows an N_{part} $\epsilon^2_{3,part}$ trend

Is the wide Gaussian non-flow as in previous interpretations* and/or $\Delta \eta$ dependence of initial density fluctuations? * Trainor, Kettler RefInt.J.Mod.Phys.E17:1219,2008

v_3^2 at Large $\Delta \eta$

Centrality variable L estimates the transverse size of the system

 v_3^2 for $\Delta\eta$ >0.6 rises then falls with centrality as the overlap shape becomes symmetric. Similar to v_2

Almond shape of the overlap area appears to couple to n=3

See Poster: J. Thomas (576, Board #43)

v_3 and $(v_3/v_2)^2$ vs centrality and p_T

 v_3 {2} using separate η ranges: η_1 <-0.5 and η_2 >0.5

See Poster: Li Yi 520, board #33

For central collisions at intermediate p_T , $v_3\{2\} \ge v_2\{2\}$: what non-flow source would give such a behavior?

Weak $v_3\{2\}$ centrality dependence & $v_3 \ge v_2$ in central were predicted by models based on initial state density inhomogeneity \Rightarrow leading explanation

v₃²/ε²_{3,part} vs Beam Energy

Analysis based on Q-Cumulants for all charges and -1<η<1

 $v_3^2/\epsilon^2_{3,part}$ follows a simple trend with N_{part} : consistent with fits to $v_3^2\{2\}$ vs $\Delta\eta$

Slope of $v_3^2/\epsilon^2_{3,part}$ is increasing with beam energy: what about the difference between $v_2^2\{2\}-v_2^2\{4\}$

Method of event plane determination

- (1) Detector calibration / cell-by-cell calibration
- (2) Q-vector, re-centering, normalization of width

$$\begin{split} &Q_{\{n\}x} = \Sigma_{i} \left\{ w_{i} \cos \left(n \; \varphi_{i} \right) \right\} & Q'_{\{n\}x} = \left(Q_{\{n\}x} - < Q_{\{n\}x} > \right) / \; \sigma_{Q\{n\}x} \\ &Q_{\{n\}y} = \Sigma_{i} \left\{ \; w_{i} \sin \left(n \; \varphi_{i} \right) \right\} & Q'_{\{n\}y} = \left(Q_{\{n\}y} - < Q_{\{n\}y} > \right) / \; \sigma_{Q\{n\}y} \\ &Q_{\{1\}x}^{ZDC} = \Sigma_{i} \left\{ \; w_{i} \; x_{i} \right\} / \; \Sigma_{i} \left\{ \; w_{i} \right\} \\ &Q_{\{1\}y}^{ZDC} = \Sigma_{i} \left\{ \; w_{i} \; y_{i} \right\} / \; \Sigma_{i} \left\{ \; w_{i} \right\} \end{split}$$

(3) n-th harmonics reaction plane

$$\Phi_{\{n\}}$$
 = atan2 (Q'_{{n}y} , Q'_{{n}x}) / n

- (4) Fourier flattening (Sergei's+Art's method paper)
 - $n \Phi'_{\{n\}} = n \Phi_{\{n\}} + \Sigma_i (2/i) \{ \langle \sin(i n \Phi_{\{n\}}) \rangle \cos(i n \Phi_{\{n\}}) + \langle \cos(i n \Phi_{\{n\}}) \rangle \sin(i n \Phi_{\{n\}}) \}$
- (5) measure v_n w.r.t. Φ_n and correct for E.P. resolution

2-particle correlation among 3-sub detectors

Forward^{Hit} (F), Backward^{Hit} (B), Central^{Track} (C)

- (1) measure dφ distribution between 2 detectors weighting by the hit amplitude
- (2) normalize by the event mixing to make correlation functions for 3 combinations
- (3) fit the correlation with Fourier function to extract $v_n^F v_n^B$, $v_n^F v_n^C$ and $v_n^B v_n^C$
- (4) $v_n^F(Hit)$ and $v_n^B(Hit)$ can be determined as a function of centrality
- (5) v_n^c (Track) can be determined as a function of centrality and p_T

Results: $v_n(\psi_n)$

http://arxiv.org/abs/1105.3928

Robust PHENIX measurements performed at 200 GeV (Crosschecked with correlation method)

Results: $v_n(\Delta \phi)$

Robust measurements performed at 200 GeV (Crosschecked with event-plane method)

Roy A. Lacey, Stony Brook University; QM11, Annecy, France 2011

Dihadron Correlations and v_n Harmonics at LHC

- ALICE, ATLAS, CMS:
- Correlation function can be obtained from sum (not fit) of Fourier Components
 - including v₂, v₃, v₄, v₅...

Test of v_n factorization at Alice

ALICE correlation paper:

arXiv: 1107.0556

Figure 6. Test of the factorization relation for: $V_{2\Delta}(p_{T,\text{assoc}}, p_{T,\text{trig}})$ (points); $v_2(p_{T,\text{assoc}}) \cdot v_2(p_{T,\text{trig}})$ (line). The bottom panel shows their ratio.

Identified $\pi/K/p v_3\{\Phi_3\}$ at 200GeV Au+Au

- •lower p_T

 particle mass

 dependence

 radial flow
- •intermediate p_T

 baryon / meson

 splitting

 quark coalescence
 at hadronization with
 partonic v₃

Radial & Partonic collective flow seen in v₃

Correlations at Intermediate p_T

 v_3 should be most evident at intermediate p_T and for central collisions where the overlap geometry is most symmetric

P. Sorensen QM11

For 0-1% central, n=3 double hump is present on the away-side without v_2 subtraction

We see effects consistent with expectations, we'll investigate further by looking at various measurements related to v_n

A remind of the baryon / meson splitting

From simplistic recombination:

Stronger trigger dilution for enhanced baryons

→ Lower associated yield per hadron trigger

Lower baryon-triggered yield in central collisions

Projections – Au+Au

- Consistent with previous results but that is a function of projection range!
- Does not reveal entire structure

Au+Au

 $4 < p_{T,trigger} < 6 \text{ GeV/c}$ $p_{t,assoc.} > 1.5 \text{ GeV/c}$

- $ightharpoonup \Delta \eta$ reveals rich trigger PID dependent structure:
 - Higher jet-like amplitude for pions
 - Ridge predominantly contributed by nonpion-triggered events

Projections – d+Au

Difference in Jet-like amplitude persists

d+Au MB

 $4 < p_{T,trigger} < 6 \text{ GeV/c}$ $p_{t,assoc.} > 1.5 \text{ GeV/c}$

π[±] trigger

Di-Hadron Correlation with PID

triggers

Large jet-like cone, small ridge from pion triggers

STAR Preliminary $\frac{d^2N}{N_Td\Delta \emptyset \ d\Delta \eta}$ 0.3 ΔΦ (P±+K±) trigger STAR Preliminary

 Smaller cone, large ridge from P+K triggers

> $4 < p_{T,trigger} < 6 \text{ GeV/c}$ $p_{t,assoc.} > 1.5 \text{ GeV/c}$

Au+Au

A. Ohlson QM11

STAR η-φ Coverage

STAR has nearly hermetic coverage over full azimuthal range and wide pseudorapidity range

4/12/2011 Chris Perkins