Probing hot and dense nuclear matter with particle correlations and jets at RHIC Hua Pei University of Illinois at Chicago ### The central goal of RHIC/LHC heavy-ion program -- ### Quantitative study of the phases of QCD The natural starting point to study the bulk properties: Begin from single particles observables and extract physics characters: T, $$C_s$$, \hat{q} , η , ζ , etc. ### Medium in the eyes of R_{AA}, from RHIC to LHC - Mesons, whether of light quarks or charm/bottoms, showing similar suppression patterns, - On contrary to "baryon anomaly" and direct-γ. - A strong indication of medium effects. - Despite more than a factor of 20 higher energy, the R _{AA} are very close for RHIC and LHC at 5<pT< 20 GeV/c - ••The same Quark soup cooked at LHC and RHIC? # Jets (including the correlation functions as proxies) as the double-edged sword Phys. Rev. Lett. 104, 252301 (2010) - Jets, originated from the hard-scattering partons, are considered to be a good probe of medium. - These scatterings happen at the early age of QGP formation, and partons have a chance of carrying the information of medium via the interactions. STAR (arXiv:1010.0690) - However, RAW correlations contain not only jets, but bulk medium information: event plane, flow v_n . - They exist in both central A+A (left plot) or mid-central (right plot). ### Flow: the primary factor(s) to disentangle Phys. Rev. C 77, 011901(R) (2008) Mach-cone? Ridge? - All plots here already have v₂ subtracted. - Are these modified jets production? Or they are medium themselves coincide with trigger particles? - There are more v_n than that v_2 to modulate the correlation functions? Phys. Rev. C **80** (2009) 64912 #### **Azimuthal anisotropy** $$\frac{dN}{d(\phi-\Psi_{\rm RP})} \propto 1$$ Softening of $+2v_1\cos{(\phi-\Psi_{\rm RP})}$ $$+ \ 2a_1\sin{(\phi-\Psi_{ m RP})}$$ Chiral magnetic effect ? Partonic d.o.f, thermalization ? $+ 2 v_2 \cos{(2\phi - 2\Psi_{ m RP})}$ $+\ 2v_3\cos{(3\phi-3\Psi_{ m RP})}$ Initial geometry fluctuations ? # Before v_3 era: $\Delta \eta - \Delta \eta$ pair densities: ridge, jet-like, and their cross-item "No correlation is found between production of the ridge and production of the jet-like particles, suggesting the ridge may be formed from the bulk medium itself." from *Phys. Rev. Lett.* 105 (2010) 22301 ### Higher v_n from 2 particle correlations #### P. Sorensen QM11 n=1 shows large difference between LS and CI: charge and momentum conservation? n=3 exhibits effects of elliptic overlap geometry. n=4 and larger show 1/N dependence typical of non-flow correlations. From mid-central to central, $v_3^2\{2\}$ follows an $N_{part}\epsilon_{3,part}^2$ trend, similar to v_2 . Q-Cumulants: A. Bilandzic, R. Snellings, S. Voloshin, Phys. Rev. C 83, 044913 (2011) These p_T integrated v_n are already exciting. Can they help us on the intermediate p_T correlations? PH***ENIX** arXiv:1105.3928 central $V_3 = V_2$ ### Theory expectations of v_n at intermediate p_T 0.25 0.15 0.1 Au+Au 200GeV $V_4\{\Psi_a\}$ In a system where space-momentum correlations develop, the initial density fluctuations can manifest in momentum space. For b=0 fm, at low p_T , v_n drops with n, but at intermediate p_T , $v_3 \sim v_2$, agree with RHIC data. It's possible to reproduce the "ridge" with these v_n , without need of jets. J.Takahashi, B.Tavares, W.Qian, F.Grassi, Y.Hama, T.Kodama & N.Xu and many others ### Correlation functions with v_n modulation ShinIchi Esumi, QM11 - Great success in central Au+Au. - The mach-cone is mostly gone. - Remaining medium effect exists. ### The $v_2 + v_3$ isn't the whole world yet v_2 subtracted di-hadron correlations: v_2 estimated using Ψ_{EP} (high $|\Delta\eta|$ from trigger) - It's measured that Ψ_2^{EP} and Ψ_3^{EP} are weakly correlated. - Thus, the fact that the v_2 modulations subtracted correlation shapes still keep strong 2^{nd} order event plane Ψ_2^{EP} dependence, can't be explained by pure v_3 . - While the measured v_2 and v_3 have weak $|\eta|$ dependence from long $\Delta\eta$ away Ψ_2^{EP} and Ψ_3^{EP} , the factorization of v_2^2 and v_3^2 need further investigation. - Higher order v_n needed. Or, is it due to those long $\Delta \eta$ non-flow contribution? ### Next task of v_n modulation: PID As those measurement in R_{AA} , it's necessary to measure and apply PIDed v_n . We can already see the kE_T and n_q scaled v_3 , up to intermediate p_T region. (Also reported at LHC) This is consistent with v_2 , showing a consistent partonic flow picture. ### Next task of v_n modulation: PID As those measurement in R_{AA} , it's necessary to measure and apply PIDed v_n . We can already see the kE_T and n_q scaled v_3 , up to intermediate p_T region. (Also reported at LHC) This is consistent with v_2 , showing a consistent partonic flow picture. Thus the correlation functions are expected to show an evident mass splitting effect, based on higher order v_n modulation pattern: Ridge? Cone? ### The v_n modulation to correlation with PID As those measurement in R_{AA} , it's necessary to measure and apply PIDed v_n . We can already see the kE_T and n_q scaled v_3 , up to intermediate p_T region. (Also reported at LHC) This is consistent with v₂, showing a consistent partonic flow picture. Background subtracted correlations Thus the correlation functions are expected to show an evident mass splitting effect, based on higher order v_n modulation pattern: Ridge? Cone? Yes they do! ### Centrality (in)dependence of v_n - A much weaker centrality dependent of v_3 is observed at RHIC (LHC), contrary to v_2 . - This is commonly considered an evidence of v₃ is caused by initial state density inhomogeneity, as were predicted by such models. - → Current leading explanation. arXiv: 1105.3928 ## More v_n work are needed, when centrality combined with PID The baryon/meson splitting are centrality dependent. - The baryon/meson splitting, and baryon "anomaly" enhancements are centrality dependent. - If v_3 is partonic flow as indicated from RHIC (and LHC), then is this weak centrality dependence of v_3 at intermediate p_T due to the convolution of $\varepsilon^2_{3,part}$, PIDed v_3 (proton v_3 > pion v_3) and "baryon anomaly"? - Will v₃ modulation produce this PID ordering in mid-central Au+Au? (work in progress) - Or is this PID ordering due to non-flow effect coming to work at inter-mediate p_T region? **Jets?** - The high- $p_T v_2$ measured at RHIC isn't approaching zero. - Here the collective effect is small. Instead, the v_2 are dominated by jet source (e.g., jet quenching in medium). - Do jets also induce v₃? Phys. Rev. Lett. 105, 142301 (2010) H. Pei DIS2011 #### Red: Same-side, Blue: Away-side - The high- $p_T v_2$ measured at RHIC isn't approaching zero. - Here the collective effect is small. Instead, the v_2 are dominated by jet source (jet quenching in medium?). - Do jets also induce v₃? - No v₃ observed in the "jet-like" correlation (v₂ subtracted) yet. $Trig_1E_T \in [10, 15]GeV$ $Trig_2p_T \in [4, 10]GeV$ $assocp_T \in [1.5, 10]GeV$ Back-to-back high-p_T trigger are selected to tag "jet-like" events. d+Au Δ v2 modulation subtracted. $\Delta \phi$ ($|\Delta \eta| < 1.0$) Phys. Rev. Lett. 105, 142301 (2010) #### A. Ohlson QM11 - The high-p_T v₂ measured at RHIC isn't approaching zero. - Here the collective effect is small. Instead, the v_2 are dominated by jet source (jet quenching in medium?). - Do jets also induce v₃? - No v₃ observed in the "jet-like" correlation (v₂ subtracted) yet. - No v_3 observed in the "jet-hadron" correlation. Phys. Rev. Lett. 105, 142301 (2010) #### Cold nuclear matter effect - Forward (FMS) π^0 trigger particle - Mid-rapidity (BEMC/TPC) π^0/h^{\pm} associated particle - Includes efficiency and background corrections - Similar $\Delta\eta$ between trigger/associated as those v_3 measured in broad $|\eta|$. Shown by Chris Perkins on DIS2011, ref. Ermes Braidot (arXiv:1102.0931) - No significant broadening from p+p to d+Au - No hints of away-side peak disappearance - As for now, the observed long $\Delta\eta$ higher-order v_n are still heavy-ion specific. ### Summary and outlook - Recent results from RHIC on the "ridge" and the away-side correlation structure are presented in central A+A collisions. - Higher order Fourier harmonics v_n based on initial geometry fluctuation, in addition to the common v_2 , make an important role in disentangle different sources of physics. These v_n successfully reproduce the correlation structures (ridge/cone) with little help from jets-medium interaction. - More quantitative analysis/prediction on these higher order v_n are necessary, including their dependence on pT, $\Delta\eta$, centrality, and PID, etc. - The hadron correlations with multiple high-energy triggers (as proxies of jets) and/or fully reconstructed jets show no signal of higher order v_n , on contrary to the high- p_T v_2 , also supporting assumption of v_2 and higher order v_n from different sources. - No evident cold-nuclear-matter effect observed for high order v_n at current stage. ### Back up Phys. Rev. C 78, 014901 (2008) 0-20% Au+Au (left) and 20-40% Au+Au (right). The "cone" appear at the same positions, showing very weak trigger/associate pT and centralities. #### The Flow probe #### **Azimuthal Distribution** $$f(\varphi) \propto \left(1 + 2\sum_{n=1}^{+\infty} v_n \cos\left[n(\varphi - \psi_n)\right]\right)$$ $$\langle e^{in\varphi} \rangle \equiv \int_0^{2\pi} e^{in\varphi} f(\varphi) d\phi = v_n e^{in\psi_n}$$ $$v_{\rm n} = \left\langle e^{in(\varphi_p - \Psi_n)} \right\rangle, \quad n = 1, 2, 3...,$$ $$\frac{dN^{\text{pairs}}}{d\Delta\varphi} \propto \left(1 + \sum_{n=1}^{\infty} 2v_n^a v_n^b \cos(n\Delta\varphi)\right)$$ For smooth profile $\varphi \rightarrow \varphi + \pi$ Odd harmonics = 0 For "lumpy" profile $\varphi \neq \varphi + \pi$ Odd harmonics $\neq 0$ ### Higher v_n from 2 Particle Correlations n=1 shows large difference between LS and CI: charge and momentum conserv? n=3 exhibits effects of elliptic overlap geometry n=4 and larger show 1/N dependence typical of non-flow correlations ### Higher v_n from 4 Particle Correlations v_n {4} consistent with zero for odd terms. Consistent with v_3^2 {2} being due to non-flow and/or with $v_n \propto \epsilon_{n,part}$: for $v_n \propto \epsilon_{n,part}$, v_n {4} $\propto \epsilon_{n,std}$ R.S. Bhalerao and J-Y.Ollitrault, Phys.Lett.B641:260-264 (2006) S. Voloshin, A. Poskanzer, A. Tang, G. Wang, Phys.Lett.B659:537-541 (2008) For 0-2.5% central $v_2\{4\}\approx 0$ indicates elliptic shape is nearly gone. We'll look at the shape of $v_n^2\{2\}$ vs. n for nearly symmetric collisions ### $v_3^2{2}$ vs $\Delta\eta$ and Non-flow Initial state density correlations may drop with Δy : interesting physics $\sigma_{\Delta y}^{-1}/\alpha_s$? Dusling, Gelis, Lappi & Venugopalan, Nucl. Phys. A 836, 159 (2010) Petersen, Greiner, Bhattacharya & Bass, arXiv:1105.0340 Fit with a wide and a narrow peak. Wide peak amplitude first drops with 1/N but then deviates from trend near N_{part} =50. Above that it follows an N_{part} $\epsilon^2_{3,part}$ trend Is the wide Gaussian non-flow as in previous interpretations* and/or $\Delta \eta$ dependence of initial density fluctuations? * Trainor, Kettler RefInt.J.Mod.Phys.E17:1219,2008 ### v_3^2 at Large $\Delta \eta$ Centrality variable L estimates the transverse size of the system v_3^2 for $\Delta\eta$ >0.6 rises then falls with centrality as the overlap shape becomes symmetric. Similar to v_2 Almond shape of the overlap area appears to couple to n=3 See Poster: J. Thomas (576, Board #43) ### v_3 and $(v_3/v_2)^2$ vs centrality and p_T v_3 {2} using separate η ranges: η_1 <-0.5 and η_2 >0.5 See Poster: Li Yi 520, board #33 For central collisions at intermediate p_T , $v_3\{2\} \ge v_2\{2\}$: what non-flow source would give such a behavior? Weak $v_3\{2\}$ centrality dependence & $v_3 \ge v_2$ in central were predicted by models based on initial state density inhomogeneity \Rightarrow leading explanation ### v₃²/ε²_{3,part} vs Beam Energy Analysis based on Q-Cumulants for all charges and -1<η<1 $v_3^2/\epsilon^2_{3,part}$ follows a simple trend with N_{part} : consistent with fits to $v_3^2\{2\}$ vs $\Delta\eta$ Slope of $v_3^2/\epsilon^2_{3,part}$ is increasing with beam energy: what about the difference between $v_2^2\{2\}-v_2^2\{4\}$ #### Method of event plane determination - (1) Detector calibration / cell-by-cell calibration - (2) Q-vector, re-centering, normalization of width $$\begin{split} &Q_{\{n\}x} = \Sigma_{i} \left\{ w_{i} \cos \left(n \; \varphi_{i} \right) \right\} & Q'_{\{n\}x} = \left(Q_{\{n\}x} - < Q_{\{n\}x} > \right) / \; \sigma_{Q\{n\}x} \\ &Q_{\{n\}y} = \Sigma_{i} \left\{ \; w_{i} \sin \left(n \; \varphi_{i} \right) \right\} & Q'_{\{n\}y} = \left(Q_{\{n\}y} - < Q_{\{n\}y} > \right) / \; \sigma_{Q\{n\}y} \\ &Q_{\{1\}x}^{ZDC} = \Sigma_{i} \left\{ \; w_{i} \; x_{i} \right\} / \; \Sigma_{i} \left\{ \; w_{i} \right\} \\ &Q_{\{1\}y}^{ZDC} = \Sigma_{i} \left\{ \; w_{i} \; y_{i} \right\} / \; \Sigma_{i} \left\{ \; w_{i} \right\} \end{split}$$ (3) n-th harmonics reaction plane $$\Phi_{\{n\}}$$ = atan2 (Q'_{{n}y} , Q'_{{n}x}) / n - (4) Fourier flattening (Sergei's+Art's method paper) - $n \Phi'_{\{n\}} = n \Phi_{\{n\}} + \Sigma_i (2/i) \{ \langle \sin(i n \Phi_{\{n\}}) \rangle \cos(i n \Phi_{\{n\}}) + \langle \cos(i n \Phi_{\{n\}}) \rangle \sin(i n \Phi_{\{n\}}) \}$ - (5) measure v_n w.r.t. Φ_n and correct for E.P. resolution #### 2-particle correlation among 3-sub detectors Forward^{Hit} (F), Backward^{Hit} (B), Central^{Track} (C) - (1) measure dφ distribution between 2 detectors weighting by the hit amplitude - (2) normalize by the event mixing to make correlation functions for 3 combinations - (3) fit the correlation with Fourier function to extract $v_n^F v_n^B$, $v_n^F v_n^C$ and $v_n^B v_n^C$ - (4) $v_n^F(Hit)$ and $v_n^B(Hit)$ can be determined as a function of centrality - (5) v_n^c (Track) can be determined as a function of centrality and p_T Results: $v_n(\psi_n)$ http://arxiv.org/abs/1105.3928 Robust PHENIX measurements performed at 200 GeV (Crosschecked with correlation method) Results: $v_n(\Delta \phi)$ Robust measurements performed at 200 GeV (Crosschecked with event-plane method) Roy A. Lacey, Stony Brook University; QM11, Annecy, France 2011 # Dihadron Correlations and v_n Harmonics at LHC - ALICE, ATLAS, CMS: - Correlation function can be obtained from sum (not fit) of Fourier Components - including v₂, v₃, v₄, v₅... ### Test of v_n factorization at Alice #### ALICE correlation paper: arXiv: 1107.0556 Figure 6. Test of the factorization relation for: $V_{2\Delta}(p_{T,\text{assoc}}, p_{T,\text{trig}})$ (points); $v_2(p_{T,\text{assoc}}) \cdot v_2(p_{T,\text{trig}})$ (line). The bottom panel shows their ratio. ### Identified $\pi/K/p v_3\{\Phi_3\}$ at 200GeV Au+Au - •lower p_T particle mass dependence radial flow - •intermediate p_T baryon / meson splitting quark coalescence at hadronization with partonic v₃ Radial & Partonic collective flow seen in v₃ ### Correlations at Intermediate p_T v_3 should be most evident at intermediate p_T and for central collisions where the overlap geometry is most symmetric P. Sorensen QM11 For 0-1% central, n=3 double hump is present on the away-side without v_2 subtraction We see effects consistent with expectations, we'll investigate further by looking at various measurements related to v_n ### A remind of the baryon / meson splitting From simplistic recombination: Stronger trigger dilution for enhanced baryons → Lower associated yield per hadron trigger Lower baryon-triggered yield in central collisions ### Projections – Au+Au - Consistent with previous results but that is a function of projection range! - Does not reveal entire structure Au+Au $4 < p_{T,trigger} < 6 \text{ GeV/c}$ $p_{t,assoc.} > 1.5 \text{ GeV/c}$ - $ightharpoonup \Delta \eta$ reveals rich trigger PID dependent structure: - Higher jet-like amplitude for pions - Ridge predominantly contributed by nonpion-triggered events ### Projections – d+Au Difference in Jet-like amplitude persists d+Au MB $4 < p_{T,trigger} < 6 \text{ GeV/c}$ $p_{t,assoc.} > 1.5 \text{ GeV/c}$ π[±] trigger ### Di-Hadron Correlation with PID triggers Large jet-like cone, small ridge from pion triggers **STAR Preliminary** $\frac{d^2N}{N_Td\Delta \emptyset \ d\Delta \eta}$ 0.3 ΔΦ (P±+K±) trigger STAR Preliminary Smaller cone, large ridge from P+K triggers > $4 < p_{T,trigger} < 6 \text{ GeV/c}$ $p_{t,assoc.} > 1.5 \text{ GeV/c}$ Au+Au A. Ohlson QM11 ### STAR η-φ Coverage STAR has nearly hermetic coverage over full azimuthal range and wide pseudorapidity range 4/12/2011 Chris Perkins