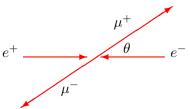
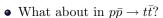
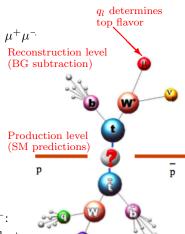
Measurement of the forward-backward asymmetry in $t\bar{t}$ events in the l+jets channel

Doug Orbaker on behalf of the DØ collaboration

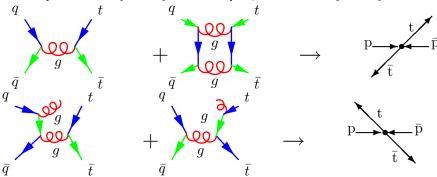




August 11, 2011


Asymmetry in top-antitop quark production

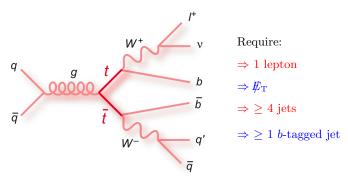
• Early 1980s: Asymmetry observed in $e^+e^- \rightarrow \mu^+\mu^-$ at $\sqrt{s}=35$ GeV validates EW theory (Phys. Rev. Lett. 48, 1701-1704 (1982)) (BG s



- $p\bar{p} \to t\bar{t}$ more complicated than $e^+e^- \to \mu^+\mu^-$:
 - ► Top quarks reconstructed from 6 decay products
- $A_{\text{FB}} = \frac{N(\Delta y > 0) N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)}$

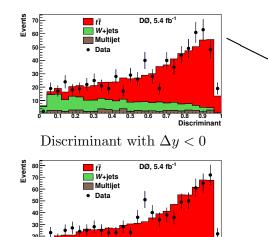
Asymmetry in the standard model

• SM predicts no asymmetry at LO in QCD, and a small asymmetry at NLO.


• Our predictions made at NLO in QCD via MC@NLO

Level	A_{FB} (%)
Production	5.0 ± 0.1
Reconstruction	2.4 ± 0.7

• Inclusive SM predictions vary from 5%-9%


Event Selection and Reconstruction

• Search in the lepton (e/μ) + jets channel

- Reconstruct events with a kinematic fitter
 - $m_W = 80.4 \text{ GeV}$
 - ▶ $m_t = 172.5 \text{ GeV}$
- Keep only assignment with lowest χ^2
- 1581 events pass selection for 5.4 fb^{-1}

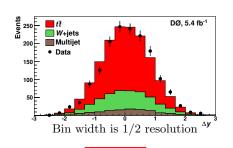
Maximum Likelihood Fit

Discriminant with $\Delta y > 0$

Signal:

$$N_{t\bar{t}} = 1126 \pm 39$$

 $A_{FB} = (9.2 \pm 3.7) \%$

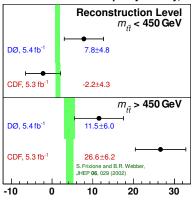

Backgrounds:

$$N_{W+jets} = 376 \pm 39$$

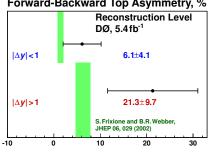
$$N_{Multijet} = 79 \pm 5$$

Discriminant

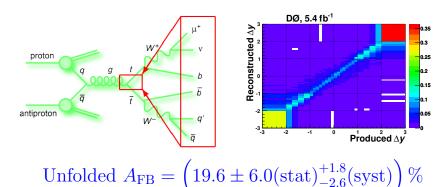
Results from reconstruction of $A_{\rm FB}$



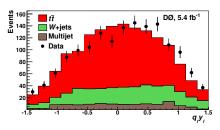
	$l+\geq 4$ jets	l+4 jets	$l+\geq 5$ jets
$A_{\mathrm{FB}}(\%)$	9.2 ± 3.7	12.2 ± 4.3	-3.0 ± 7.9
MC@NLO A_{FB} (%)	$2.4{\pm}0.7$	3.9 ± 0.8	-2.9 ± 1.1


- Measured $A_{\rm FB} = \left(9.2 \pm 3.6({\rm stat})^{+0.8}_{-0.9}({\rm syst})\right)\%$
- Statistical significance from MC@NLO prediction: 1.9 SD

Dependence of $A_{\rm FB}$ on $m_{t\bar{t}}$ and $|\Delta y|$



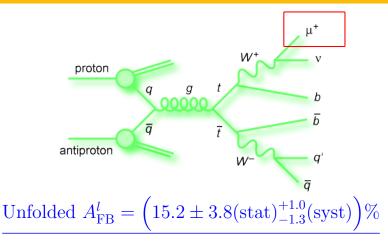
Forward-Backward Top Asymmetry, %


• No significant dependence of $A_{\rm FB}$ on $m_{t\bar{t}}$

Unfolding

- Regularized unfolding via TUnfold class with $50 \rightarrow 26$ bins in Δy
 - ► Regularize on curvature of event density
- Cross-checked with four bin ML unfolding
- Better statistical strength using regularized unfolding
 - Statistical significance from MC@NLO prediction: 2.4 SD

Lepton-based asymmetry



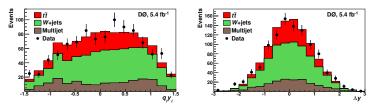
$$A_{\rm FB}^l = \frac{N(q_l y_l > 0) - N(q_l y_l < 0)}{N(q_l y_l > 0) + N(q_l y_l < 0)}$$

- Simple observable
- Same technique as measurement of reconstructed A_{FB}
- To avoid large acceptance corrections: require $|y_l| < 1.5$
- 1532 events

	$l+\geq 4$ jets	l+4 jets	$l+\geq 5$ jets
A_{FB}^{l} (%)	14.2 ± 3.8	15.9 ± 4.3	7.0 ± 8.0
MC@NLO A_{FB}^{l} (%)	0.8 ± 0.6	2.1 ± 0.6	-3.8 ± 1.2

Unfolding $A_{\rm FB}^l$

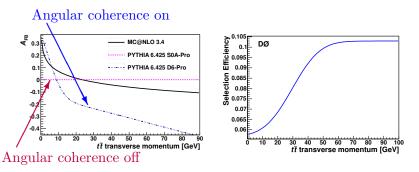
- Production level MC@NLO prediction: $A_{\rm FB}^l = (2.1 \pm 0.1) \%$
- \bullet Migrations are very small \rightarrow correct only for acceptance
- Statistical significance from MC@NLO: 3.4 SD


Systematic uncertainties

Measurement dominated by <u>statistical uncertainties</u>

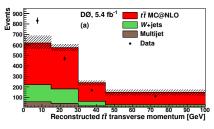
Absolute uncertainty on $A_{\rm FB}$ (%)				
	Reco	Prod. level		
Source	Prediction	Measurement	Measurement	
Jet reco	± 0.3	± 0.5	±1.0	
JES/JER	+0.5	-0.5	-1.3	
Signal modeling	± 0.3	± 0.5	+0.3/-1.6	
b-tagging	-	± 0.1	± 0.1	
Charge ID	-	+0.1	+0.2/-0.1	
Bg subtraction	-	± 0.1	+0.8/-0.7	
Unfolding Bias	-	=	+1.1/-1.0	
Total	+0.7/-0.5	+0.8/-0.9	+1.8/-2.6	
	Absolu	te uncertainty or	A_{FB}^{l} (%)	
		te uncertainty or	A_{FB}^{l} (%)	
Source			FB ()	
Source Jet reco	Rec	o. level	Prod. level	
	Rec Prediction	o. level Measurement	Prod. level Measurement	
Jet reco	Rec Prediction ±0.3	o. level Measurement ±0.1	Prod. level Measurement ±0.8	
Jet reco JES/JER	Rec Prediction ±0.3 +0.1	0. level Measurement ±0.1 -0.4	Prod. level Measurement ±0.8 +0.1/-0.6	
Jet reco JES/JER Signal modeling	Rec Prediction ±0.3 +0.1	0. level Measurement ±0.1 -0.4 ±0.5	Prod. level Measurement ±0.8 +0.1/-0.6 +0.2/-0.6	
Jet reco JES/JER Signal modeling b-tagging	Rec Prediction ±0.3 +0.1	o. level Measurement	Prod. level Measurement ±0.8 +0.1/-0.6 +0.2/-0.6 ±0.1	

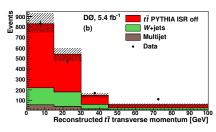
Cross checks


- Simultaneously measured $A_{\rm FB}$ for $t\bar{t}$ and $W+{\rm jets}$
 - ► Also included events with 0 b-tags
 - ▶ Measured A_{FB} for W+jets in good agreement with simulation

- Checked $A_{\rm FB}$ by solenoid and toroid polarities
 - ► Found no significant dependence
- Checked $A_{\rm FB}$ by lepton charge
 - ► Found no significant dependence
- Good agreement between e+jets and μ +jets

$A_{\rm FB}$ and top pair p_T

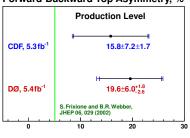

• Is amount of gluon radiation the same for forward and backward events?



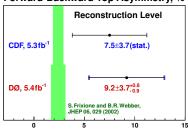
- If correlation exists, backward events selected more often than forward events
- Effect on measurement is included in systematics: -1.6%
- What is effect on prediction?

Modeling and top pair p_T

- The correlation between $p_T^{t\bar{t}}$ and $A_{\rm FB}$ may be large
- So we checked the modeling of $p_T^{t\bar{t}}$
- \bullet Drastic change needed to get simulation to match data for $p_T^{t\bar{t}}$



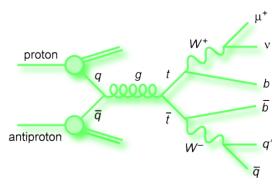
Bins of 1/2 resolution. Hash marks = uncertainty from jet reconstruction


• Low $p_T^{t\bar{t}} \to \text{less gluon radiation} =? \text{larger predicted } A_{\text{FB}}$

Summary

Forward-Backward Top Asymmetry, %

Forward-Backward Top Asymmetry, %

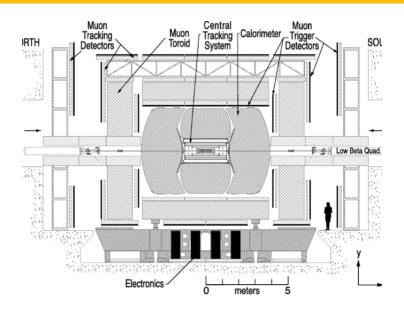


- Inclusive results in agreement between DØ and CDF
- But deviate from predictions
- Measure no significant dependencies of A_{fb} on either $m_{t\bar{t}}$ or $|\Delta y|$
- Unfolded $A_{\text{FB}}^l = \left(15.2 \pm 3.8(\text{stat})_{-1.3}^{+1.0}(\text{syst})\right)\%$
- Compare to MC@NLO, but note limitations
- For more information: arXiv:1107.4995

Backup Slides

Kinematic fitter

- Answers questions: Which jets came from top quark and which jets came from antitop quark?
- Gets right answer 70% of events where leading four jets are from $t\bar{t}$ decay.
- Constrain m_W to 80.4 GeV and m_t to 172.5 GeV.
- Vary jets within resolution and get χ^2 for each jet permutation.


Reconstructed $A_{\rm FB}$ table

	$l+\geq 4$ jets	$e+\geq 4$ jets	$\mu+\geq 4$ jets	l+4 jets	$l+\geq 5$ jets
Raw $N_{\Delta y>0}$	849	455	394	717	132
Raw $N_{\Delta y < 0}$	732	397	335	597	135
$N_{tar{t}}$	1126 ± 39	622 ± 28	502 ± 28	902 ± 36	218 ± 16
N_W	376 ± 39	173 ± 28	219 ± 27	346 ± 36	35 ± 16
$N_{ m MJ}$	79 ± 5	56 ± 3	8 ± 2	66 ± 4	13 ± 2
$A_{\mathrm{FB}}(\%)$	9.2 ± 3.7	$8.9 {\pm} 5.0$	$9.1 {\pm} 5.8$	12.2 ± 4.3	-3.0 ± 7.9
MC@NLO A_{FB} (%)	$2.4 {\pm} 0.7$	$2.4 {\pm} 0.7$	$2.5 {\pm} 0.9$	3.9 ± 0.8	-2.9 ± 1.1

Reconstructed $A_{\rm FB}^l$ table

	$l+\geq 4$ jets	$e+\geq 4$ jets	$\mu+\geq 4$ jets	l+4 jets	$l+\geq 5$ jets
Raw $N_{q \cdot y_l > 0}$	867	485	382	730	137
Raw $N_{q \cdot y_l < 0}$	665	367	298	546	119
A_{FB}^{l} (%)	$14.2 \pm\ 3.8$	16.5 ± 4.9	$9.8 \pm \ 5.9$	$15.9 \!\pm 4.3$	$7.0 \pm\ 8.0$
MC@NLO A_{FB}^{l} (%)	$0.8\!\pm0.6$	$0.7\!\pm0.6$	$1.0 \!\pm 0.8$	$2.1\!\pm0.6$	-3.8 ± 1.2

DØ detector

