Search for Chargino-Neutralino Associated Production in Dilepton Final States with Tau Leptons

DPF Providence, Aug 10, 2011

Rob Forrest, UC Davis For the CDF collaboration

Same-Sign lepton and hadronic tau $(e/\mu + \tau)$

- Electroweak production of Charginos and Neutralinos
- Adding hadronic τ decays lends sensitivity to high tan β SUSY models.
- Dileptons increases acceptance relative to requiring trileptons.
- Same-Sign leptons reduces DY background.
- Complimentary to SS dilepton analysis with all es and μ s.

Collider Detector at Fermilab (CDF)

Over 60 Institutions ~ 40 PhDs granted/year

Dilepton analysis strategy:

- Measure and validate Fake Rate Background
- Select OS dilepton events, compare expected BG to data.
 - OS Dileptons stage well understood, useful for validation.
- Make SUSY optimized event level MET cuts.
 - Use generic models, don't tune to mSUGRA.
- Open signal box and set limits (or discover!)

Data

- Lepton side standard e, μ
- T side more complicated:
 - Requires τ-like signal and isolation cones
 - Much more efficient at τ finding than Jet triggers.

Figure 9: Tau isolation and signal cones.

Lepton Selection

- Standard cuts for e/μ with $P_t > 20$ GeV/c
- Additional Isolation cuts for $P_t < 20$ GeV/c

Track and Calorimeter Isolation $\Sigma P_T^{iso} < 2.0 \text{ GeV tracks in } \Delta R < 0.4$ $E_{rel}^{iso} < 0.1 \text{ GeV or } E^{iso} < 2.0 \text{ GeV}$

т Selection

Have a 'tight' τ for Analysis and a 'loose' τ for Fake Rate

All Ts have :

$$\begin{split} P_T &> 15.0 \text{ GeV/c for 1-pronged} \\ P_T &> 20.0 \text{ GeV/c for 3-pronged} \\ P_T^{seedtrk} &> 6.0 \text{ GeV/c} \\ P_T^{shtrk} &> 1.0 \text{ GeV/c} \\ E_T^{\tau cl} &> 9.0 \text{ GeV} \\ N_{sig}^{trk} &= 1, 3 \\ |\Sigma Q^{trk}| &= 1 \end{split}$$

'Tight' Ts additionally have :

 $\Sigma P_{T,trk}^{iso} < 2.0 \text{ GeV/c}$

 $\Sigma E_{T,\pi^0}^{iso} < 1.0 \text{ GeV}$

 $M(trks + \pi^0 s) < 1.8~GeV/c^2$

 $\frac{E_{tot}}{\Sigma | \vec{p} |} (0.95 - \frac{E_{EM}}{E_{tot}}) \equiv \xi' > 0.1$

Background Model

From Monte Carlo. Well-modeled, small backgrounds.

Ts are Hard: $Jet \rightarrow T$ Fake Rate can be ~30%

 $\begin{cases} \nabla U \\ \gamma + Jet \\ W \rightarrow l\nu + Jet \end{cases}$ Jet $\rightarrow T$ Fake Rate Method Any event containing a fake tau.

 $W \rightarrow l\nu + \text{Jet}$ will be the largest background

Measuring jet $\rightarrow \tau$ Fake Rate

Measure **relative** FR from Jet data Tight/Loose T's.

Denominator loose Ts must be tighter than the trigger.

Trigger is actually quite rich in real Ts.

jet \rightarrow T Fake Rate Validation

Apply FR in orthogonal samples

Samples:

```
Tagged Conversions (γ + Jet)
Non-isolated e, μ (QCD)
W + Jets Enhanced region
```

Leading Jet and sub-leading jet determine systematic.

25% Systematic dominates result.

Tau Fake Rate Application

- Our signal sample 'contaminated' with many real Ts
- Straight up fake rate application overestimates
- Subtraction procedure to correct for this.

Loose T Weight: $w_i^{\overline{ID}} = \frac{f(\Omega_i)\epsilon(\Omega_i)}{\epsilon(\Omega_i) - f(\Omega_i)}$ Positive Fake Rate

Tight TWeight: $w_i^{ID} = \frac{f(\Omega_i)(\epsilon(\Omega_i) - 1)}{\epsilon(\Omega_i) - f(\Omega_i)}$ Negative Correction

 $\epsilon(\Omega_i)$ **T** Finding Efficiency (From MC)

 $f(\Omega_i)$ T Measured Fake Rate

Additional corrections for γ +Jet process gluon composition

OS Control Region Plots - µ Channel

- Using OS control region as main validation.
- Basic Ht > 45 GeV cut for QCD Reduction

$$H_T = |P_T^l| + |P_T^\tau| + \not\!\!\!E_T$$

CDF Run II Preliminary 6.0 fb^{-1}		
OS $\mu - \tau$		
Process	Events \pm stat \pm syst	
$Z \rightarrow \tau \tau$	$3708.8 \pm 41.1 \pm 296.7$	
$\text{Jet} \to \tau$	$1956.2 \pm 16.5 \pm 489.8$	
$Z \rightarrow \mu \mu$	$262.0 \pm 20.1 \pm 21.0$	
$Z \rightarrow ee$	$0.0 \pm 0.0 \pm 0.0$	
$W \rightarrow \tau \nu$	$189.5 \pm 8.9 \pm 18.6$	
$t\overline{t}$	$18.5 \pm 0.2 \pm 2.6$	
Diboson	$31.0 \pm 0.7 \pm 3.0$	
Total	$6166.1 \pm 49.4 \pm 573.4$	
Data	6210	

OS Control Region Plots - e Channel

CDF Run II Preliminary 6.0 fb^{-1}		
OS $e - \tau$		
Process	Events \pm stat \pm syst	
$Z \rightarrow \tau \tau$	$3258.5 \pm 38.5 \pm 260.7$	
$\operatorname{Jet} \to \tau$	$2570.2 \pm 21.1 \pm 577.6$	
$Z \rightarrow \mu \mu$	$0.5\pm0.9\pm0.0$	
$Z \rightarrow ee$	$82.5 \pm 8.6 \pm 6.6$	
$W \rightarrow \tau \nu$	$182.0 \pm 8.7 \pm 17.8$	
$t\overline{t}$	$17.8 \pm 0.2 \pm 2.5$	
Diboson	$30.3 \pm 0.7 \pm 3.0$	
Total	$6141.9 \pm 45.6 \pm 634.0$	
Data	6058	

Both Channels:

Simplified Signal Models

- Mass spectrum of Charginos, Neutralinos, sTau, LSP determine kinematics of final state particles.
- Simplified models enable direct manipulation of MSSM masses, independent of mSugra constraints.

• 'Simplified Gravity' and 'Simplified Gauge' Models. Set limits on SUSY σ .

Simplified Gravity Model

- Can vary M(Chargino), M(slepton), M(LSP).
- Also vary slepton coupling to e, μ , τ .

Constraints:

- -M(Chargino) = M(Neutralino)
- -Masses chosen so as not to decay through W,Z,H

-M(gluino, squark) is high.

Simplified Gauge Model

- GMSB Generally predicts light (sub-KeV) gravitino (MET).
- NLSP decays to gravitino plus SM partner
- We identify simple parameter space with slepton NLSPs

No intermediate decays through W, Z, H

SS Control Region Plots - e Channel

14

CDF Run II Preliminary 6.0 fb^{-1}		
SS $e - \tau$		
Process	Events \pm stat \pm syst	
$Z \rightarrow \tau \tau$	$5.0 \pm 1.5 \pm 0.4$	
$ \text{ Jet} \rightarrow \tau$	$537.0 \pm 10.4 \pm 129.0$	
$ Z \rightarrow \mu \mu$	$0.0\pm0.0\pm0.0$	
$Z \rightarrow ee$	$0.0\pm0.0\pm0.0$	
$W \rightarrow \tau \nu$	$43.2 \pm 4.2 \pm 4.2$	
$t\overline{t}$	$0.4\pm0.0\pm0.0$	
Diboson	$2.1\pm0.2\pm0.2$	
Total	$587.7 \pm 11.3 \pm 129.1$	
Data	518	

MET > 20 GeV

SS Control Region Plots - µ Channel

CDF Run II Preliminary 6.0 fb^{-1}		
SS $\mu - \tau$		
Process	Events \pm stat \pm syst	
$Z \rightarrow \tau \tau$	$5.1 \pm 1.5 \pm 0.4$	
$Jet \to \tau$	$615.7 \pm 11.2 \pm 154.2$	
$Z \rightarrow \mu \mu$	$0.0\pm0.0\pm0.0$	
$Z \rightarrow ee$	$0.0\pm0.0\pm0.0$	
$W \rightarrow \tau \nu$	$53.7 \pm 4.7 \pm 5.3$	
$t\overline{t}$	$0.4\pm0.0\pm0.0$	
Diboson	$2.3 \pm 0.2 \pm 0.2$	
Total	$677.1 \pm 12.2 \pm 154.3$	
Data	598	

MET > 20 GeV

SS Control Region Plots - MET Both Channels

- Signal shown here for two models.
- MET is our final, tuned event level cut.
- Final exclusions will be SUSY σ limits (arbitrary here)

2-D Exclusion Contours

- Create grid of signal points for many LSP values (GeV): 45, 120, 220 or LSP = 0 (for Simplified Gauge)
- Find best MET cut (s/ \sqrt{b}) at each point.
- Create simple analytical expression for MET cut value.

Results Simplified Gauge Model

- Plot contours of iso-σ.
- Excluding SUSY process σ, lower value is better.

Results Simplified Gravity Model

Simplified Gravity models suffer from massive LSP

Conclusions

- Including a hadronic τ while being as inclusive as possible, should have unique sensitivity to unexplored high tan β
 SUSY space.
- Final selection background almost totally data driven.
- Generic models free us from dependence on specific model constraints, increasing utility to theorists.

Analysis Webpage: <u>http://www-cdf.fnal.gov/~rforrest/dilepton/</u>