The MAJORANA Demonstrator Project

Frank Avignone
University of South Carolina
(For the MAJORANA COLLABORATION)

DPF-2011, BROWN UNIVERSITY AUGUST 9-13, 2011
Modes of Double-Beta Decay

\[(A,\nu) \rightarrow (A,Z+2) + 2e^- + 2\nu_e\]

\[(A,Z) \rightarrow (A,Z+2) + 2e^-\]

\[\text{2}\nu \text{ Double Beta Decay} \]

allowed by the Standard Model
observed: \(T_{1/2} = 10^{19} - 10^{21}\) y

\[\text{Neutrinoless Double Beta Decay (0}\nu\text{-DBD)}\]
never observed (except KKDK claim)
\(T_{1/2} > 10^{25}\) y

Lepton-Number Violation? Dirac or Majorana Character? Neutrino Mass Scale?
Towards a Ton-scale Experiment: the MAJORANA Demonstrator
The MAJORANA Demonstrator Module

76Ge offers an excellent combination of capabilities & sensitivities.

(Excellent energy resolution, intrinsically clean detectors, commercial technologies)

- **40-kg of Ge detectors**

 Up to 30-kg of 86% enriched 76Ge crystals required for science and background goals focus on point-contact detectors for DEMONSTRATOR

- **Low-background Cryostats & Shield**

 – ultra-clean, electroformed Cu

 – naturally scalable

 – Compact low-background passive Cu and Pb shield with active muon veto

- **Background Goal in the $0
\nu\beta\beta$ peak ROI (4 keV at 2039 keV)**

 ~ 4 count/ROI/t-y (after analysis cuts) (scales to 1 count/ROI/t-y for tonne expt.)
Electroformed Copper Cryostat

- Top Lid
- Thermosyphon mounting plate
- Coldplate
- Cross Arm
- Bottom Lid
- Thermal Shield Can
- Thermosyphon Tube
The Dual Module Shield

• **Three Phases**
 – *Prototype cryostat (3 strings, \(\text{nat} \text{Ge} \)) (Sept. 2012)*
 – *Cryostat 1 (3 strings \(\text{enr} \text{Ge} \) & 4 strings \(\text{nat} \text{Ge} \)) (Mar. 2013)*
 – *Cryostat 2 (up to 7 strings \(\text{enr} \text{Ge} \)) (Sept. 2014)*
Point contact Ge detectors allow multi-site events to be identified - invented by Paul Luke (LBNL), Developed by Juan Collar for MAJORANA
Effectiveness of Pulse-Shape Discrimination With MAJORANA POINT Contact Detectors

Single-site versus multi-site event discrimination

Example of DUPPC 232Th spectrum:
MAJORANA Demonstrator Sensitivity

\[
\langle m_{\beta\beta} \rangle \text{ sensitivity (90\% CL) [eV]}
\]

- MAJORANA Prototype Module (30 kg, 1 count/ROI/t/y)
- MAJORANA Prototype Module (30 kg, 10 counts/ROI/t/y)

KKDC (3\sigma): (0.69-4.18) \times 10^{25} \text{ years}
Acquisition of Enriched 76Ge

• The first 29 kg of GeO$_2$ of Ge enriched to >86% in 76Ge has been processed and is already on its way to Oak Ridge (20 kg of Ge metal)

• It is proceeding by truck from the Electrochemical Plant in Zelenogorsk, Russia to the Port of St. Petersburg, then by ship to a U.S. port, then by truck to Oak Ridge.

• It is being shipped in a steel shipping shield to reduce exposure to cosmic ray neutrons that generate 56,57,60Co, 68Ge, 65Zn, etc., by spallation reactions.
The Shipping Shield (GERDA design, built in Russia)
Shield Dimensions
A Photo of the MAJORANA SHIPPING SHIELD
Reduction of the GeO$_2$ and Zone Refining the Ge

• Unfortunately, no experienced commercial company in the U.S. would agree to reduce the oxide and zone-refine the enriched Ge.

• This required the setting up of a complete facility to do this.

• A building was rented, experts, some from the Ge industry, were hired, and all necessary equipment was purchased and installed.

• The process is being tuned using 29 kg of $^{\text{nat}}$GeO$_2$.
Reduction of the $^{\text{nat}}\text{GeO}_2$ to $^{\text{nat}}\text{Ge}$ Metal

Reduction Furnace at 650 °C, Then Melt at 1030 °C.

The First 12 of 29 Bars from Reduction. Each is ~0.75 kg
Zone Refining the $^{\text{nat}}\text{Ge}$

50 KW LEPEL RF Generator and Zone Refiner coils (left)
Above is shown the graphite boat with about 2.5 kg of Ge moving through the RF coils.
Cutting Zone-Bar I, Reduction Bars 27-29 (2155.6 g)

<table>
<thead>
<tr>
<th>Zone Bar</th>
<th>Reduction Bars</th>
<th>Total Mass (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2-6</td>
<td>2634.0</td>
</tr>
<tr>
<td>B</td>
<td>7-9</td>
<td>1658.0</td>
</tr>
<tr>
<td>C</td>
<td>10-12</td>
<td>1694.4</td>
</tr>
<tr>
<td>D</td>
<td>13-15</td>
<td>1952.5</td>
</tr>
<tr>
<td>E</td>
<td>16-18</td>
<td>2223.2</td>
</tr>
<tr>
<td>F</td>
<td>19-21</td>
<td>2257.2</td>
</tr>
<tr>
<td>G</td>
<td>22-24</td>
<td>2251.3</td>
</tr>
<tr>
<td>H</td>
<td>25-26</td>
<td>2155.6</td>
</tr>
</tbody>
</table>
MAJORANA and GERDA for the Ton Scale Effort

MAJORANA
- Modules of 76Ge housed in high-purity electroformed copper cryostat
- Shield: electroformed copper / lead
- Initial phase: R&D demonstrator module: Total \sim40 kg (up to 30 kg enr.)

GERDA
- ‘Bare’ 76Ge array in liquid argon
- Shield: high-purity liquid Argon / H$_2$O
- Phase I (2011): \sim18 kg (HdM/IGEX diodes)
- Phase II (2012): add \sim20 kg new detectors - Total \sim40 kg

Joint Cooperative Agreement:
- Open exchange of knowledge & technologies (e.g. MaGe, R&D)
- Intention is to merge for 1 ton exp. Select best techniques developed and tested in GERDA and MAJORANA
Predictions for the Ton-Scale Experiment
Estimated Schedules

3σ inclusion region: (1.30-3.55) x 10^{25} years

Shift time by ~ One Year
The MAJORANA Collaboration (Feb. 2011)

Note: Red text indicates students

Black Hills State University, Spearfish, SD
Kara Keeter

Duke University, Durham, North Carolina, and TUNL
Matthew Busch, James Esterline, Gary Swift, Werner Tornow

Institute for Theoretical and Experimental Physics, Moscow, Russia
Alexander Barabash, Sergey Konovalov, Igor Vanushin, Vladimir Yumakov

Joint Institute for Nuclear Research, Dubna, Russia
Viktor Brudanin, Slava Egorov, K. Gusey, Oleg Kochetov, M. Shirchenko, V. Timkin, E. Yakushev

Lawrence Berkeley National Laboratory, Berkeley, California and the University of California - Berkeley

Los Alamos National Laboratory, Los Alamos, New Mexico
Melissa Boswell, Steven Elliott, Mark M. Gehman, Andrew Hime, Mary Kidd, Ben LaRoque, Keith Rielage, Larry Rodriguez, Michael Ronquest, Harry Salazar, David Steele

North Carolina State University, Raleigh, North Carolina and TUNL
Dustin Combs, Lance Leviner, Albert Young

Oak Ridge National Laboratory, Oak Ridge, Tennessee
Fred Bertrand, Greg Capps, Ren Cooper, Kim Jeskie, David Radford, Robert Varner, Chang-Hong Yu

Osaka University, Osaka, Japan
Hiroyasu Ejiri, Ryuta Hazama, Masaharu Nomachi, Shima Tatsui

Pacific Northwest National Laboratory, Richland, Washington
Craig Aalseth, Estanislao Aguayo, Jim Fast, Eric Hoppe, Todd Hossbach, Marty Keilior, Jeremy Keohart, Richard T. Kouzes, Harry Miley, John Orrell, Doug Reid

Queen's University, Kingston, Ontario
Art McDonald

South Dakota School of Mines and Technology
Xinhua Bai, Cabot-Ann Christofferson, Haining Hong, Mark Horton, Stanley Howard, Dana Medlin, Vladimir Sobolev

University of Alberta, Edmonton, Alberta
Aksel Hallin

University of Chicago, Chicago, Illinois
Juan Collar, Nicole Fields

University of North Carolina, Chapel Hill, North Carolina and TUNL
Padraig Finnerty, Florian Fraenkel, Graham Giovanetti, Matthew Green, Recco Henning, Mark Howe, Sean MacMullin, David Phillips II, Jacqueline Strain, Kris Vorren, John F. Wilkerson

University of South Carolina, Columbia, South Carolina
Frank Avignone, Richard Creswick, Horatio A. Farach, Leila Mizouni

University of South Dakota, Vermillion, South Dakota
Vince Guipene, Tina Keller, Keenan Thomas, Donming Mei, Oleg Perelvzchnikov, Gopakumar Perumolll, Wenchang Xiang, Chao Zhang

University of Tennessee, Knoxville, Tennessee
William Buog, Yuri Efremenko

University of Washington, Seattle, Washington
Tom Burritt, Jonathan Diaz, Peter J. Doe, Greg Harper, Robert Johnson, Andreas Knecht, Michael Marino, Mike Miller, David Peterson, R. G. Hamish Robertson, Alexis Schubert, Tim Van Wechel, Brett Wolfe