Measurement of WW Cross Section at 7 TeV with the ATLAS Detector at LHC

Haijun Yang (on behalf of the ATLAS Collaboration)

APS/DPF Meeting, Brown University August 9-13, 2011

Outline

- ➢ WW Production at LHC
- ➤ WW Event Selection
- Background Estimations
- Sources of Systematic Uncertainties
- WW Fiducial and Total Cross Sections
- ➤ Summary

WW Production at LHC

qq' \rightarrow WW production σ_{NLO} = (44.92 ± 2.25) pb at 7 TeV

gg \rightarrow WW contributes additional ~3% of WW event rate : 1.3 pb

- ♦ Major background to SM Higgs \rightarrow WW search
- Sensitive to new physics through anomalous TGC
- Experimental signature: two isolated leptons with large MET
- Major backgrounds: W/Z + jets, ttbar, single top

WW Analysis using 2010 Data

- ➢ Based on 34 pb⁻¹ integrated luminosity at 7 TeV
 - Solution Soluti Solution Solution Solution Solution Solution Solution Solu
 - > Expected signal: 6.85 $\pm 0.07 \pm 0.66$
 - > Expected background: 1.68 $\pm 0.37 \pm 0.42$
 - → WW: $\sigma_{W^+W^-} = 41^{+20}_{-16}(stat.) \pm 5(syst.) \pm 1(lumi.) pb$

Published: Phys. Rev. Lett. 107, 041802 (2011)

WW Cross Section - H. Yang

Major Challenges in 2011 Data

➢ Higher luminosity (~1.75×10³³cm⁻²s⁻¹)

- ➢ higher pileup, more backgrounds from Drell-Yan, Top etc.
- Corrections on JES, MET, lepton isolation
- Needs better understanding of systematic uncertainties

Major $\ell^+\ell^-$ + E_T^{miss} Backgrounds

• W+jets

- W leptonic decay produces a charged lepton and large missing E_T .
- Associated jets can fake a second charged lepton.
- > Suppressed by lepton identification.

Drell-Yan

- high P_T charged lepton pairs produced from leptonic decays of Drell-Yan bosons.
- Missing E_T either from mis-measurement of leptons or of associated jets, or from $Z \rightarrow \tau \tau$.
- > Reduced by Z mass veto and missing E_T cut.

о Тор

- WW pairs produced in *tt* or single top processes.
- > Rejected by vetoing on high- P_T jets.

Di-boson (*WZ,ZZ,W/Z*+γ)

- Leptons from boson decays or faked by photons.
- Missing E_T from neutrino production or e/μ escape.
- Suppressed by the criteria mentioned above plus the requirement of exactly two high P_T charged leptons.

WW Event Selection

Remove Drell-Yan Background:

- > Exact two leptons with opposite sign charge, p_{T}^{ℓ} > 20 GeV
- > $|M_{\parallel} M_{z}| > 15 GeV$ for ee and $\mu\mu$ channels
- > M_{\parallel} >15GeV for ee and $\mu\mu$, and M_{\parallel} > 10 GeV for e μ channel

WW Cross Section - H. Yang

WW Event Selection

Further remove Drell-Yan and Wjets/QCD:

MET^{Rel} distributions after Z mass veto cut

WW Cross Section - H. Yang

Jet Veto to Remove Top Background no jet with $E_T > 30$ GeV and $|\eta| < 4.5$

WW Cross Section - H. Yang

W+Jets Background Estimation

Data driven method to estimate W + Jets

– Define a fake factor f :

 $f_l \equiv \frac{N_{lepton ID}}{N_{Jet-Rich ID}} \longrightarrow$ using di-jet samples in data

- W+jet background contributes to WW selection:

 $N_{W+jet Bkg} = f_l \times N_{lepton ID + Jet-Rich ID}$

$$N_{W+jet Bkg}^{e\mu-ch} = f_e \times N_{\mu ID + Jet-Rich e} + f_{\mu} \times N_{elec. ID + Jet-Rich \mu}$$

Checked with an independent data driven matrix method

	Estimated <i>W</i> +jets background
Channel	from Data
ee-channel	$5.3 \pm 0.4(\text{stat}) \pm 1.7(\text{syst})$
$e\mu$ -channel (e fake)	$8.1 \pm 0.5(stat) \pm 2.9(syst)$
Sum of e fake background	$13.4 \pm 0.6(stat) \pm 4.6(syst)$
$\mu\mu$ -channel	$12.4 \pm 2.9(stat) \pm 5.2(syst)$
$e \ \mu$ -channel (μ fake)	$24.7 \pm 3.8(\text{stat}) \pm 8.7(\text{syst})$
Sum of μ fake background	$37.1 \pm 4.8(\text{stat}) \pm 14.0(\text{syst})$
Sum of $e\mu$ -channel	32.9±3.8(stat)±9.2(syst)
$ee + \mu\mu + e\mu$ -channel	50.5±4.8(stat)±14.7(syst)

Drell-Yan Background Estimation

Data-Driven Method (DDM):

 $N_{DY}^{out}(estimated) = N_{DYDATA}^{in} \times R_{out/in}; here R_{out/in} = \frac{N_{DYMC}^{out}}{N_{DYMC}^{in}}$

MC closure test: good agreement between input and estimated DY background has been observed

	ee	μμ	eμ
MC	$18.7 \pm 1.9 \pm 1.9$	$19.2 \pm 1.7 \pm 2.1$	$16.0 \pm 2.8 \pm 1.7$
DDM	18.2 ± 3.4	20.1 ± 3.6	-

Drell-Yan is estimated from Alpgen MC prediction. Systematic uncertainty (~10.4%) is determined by comparing MET^{rel} distributions from Data and MC using Z control sample

$$S(E_{\rm T, Rel}^{\rm miss}cut) = \frac{N_{\rm MC}(E_{\rm T, Rel}^{\rm miss}cut) - N_{\rm data}(E_{\rm T, Rel}^{\rm miss}cut)}{N_{DY}(E_{\rm T, Rel}^{\rm miss}cut)}$$

Top Background Estimation

- * Top background is estimated using a *semi-data-driven method*:
 - ♦ $N_{jet} \ge 2$: Control region is dominated by Top background
 - ★ Assuming fraction of Top events with N_{jet} = 0 and N_{jet} ≥ 2 are similar in MC and data
 - Advantage: uncertainties on luminosity and the top cross sections are cancelled out in the MC ratio

$$N_{\text{Top}}^{\text{Estimated}}(N_{\text{jet}} = 0) = N_{\text{Top}}^{\text{MC}}(N_{\text{jet}} = 0) \times \frac{N_{\text{data}}(\text{control region})}{N_{\text{Top}}^{\text{MC}}(\text{control region})} \stackrel{\text{\&}}{\longrightarrow}$$

- Estimated Top in signal region (N_{jet}=0)
 58.6±2.1 (stat)±22.3 (syst, from JES)
 - Cross-checked with b-tagged Top control sample to estimate Top background
- ✤ MC Expectation: 56.7

data/MC

WW Selected Events (1.02 fb⁻¹)

Final State	$e^+e^-E_{ m T}^{ m miss}$	$\mu^+\mu^- E_{ m T}^{ m miss}$	$e^\pm \mu^\mp E_{ m T}^{ m miss}$	Combined
Observed Events	74	97	243	414
Background estimations				
Top(data-driven)	$9.5 {\pm} 0.3 {\pm} 3.6$	$12.3 \pm 0.4 \pm 4.7$	$36.8 {\pm} 1.3 {\pm} 14.0$	$58.6 {\pm} 2.1 {\pm} 22.3$
W+jets (data-driven)	$5.3 {\pm} 0.4 {\pm} 1.7$	$12.4 \pm 2.9 \pm 5.2$	$32.9 \pm 3.8 \pm 9.2$	$50.5{\pm}4.8{\pm}14.7$
Drell-Yan (MC/data-driven)	$18.7 {\pm} 1.9 {\pm} 1.9$	$19.2 \pm 1.7 \pm 2.1$	$16.0{\pm}2.8{\pm}1.7$	$54.0{\pm}3.7{\pm}4.5$
Other dibosons (MC)	$0.9{\pm}0.1{\pm}0.1$	$2.4{\pm}0.2{\pm}0.3$	$3.4 \pm 0.3 \pm 0.4$	$6.8 {\pm} 0.4 {\pm} 0.8$
Total Background	$34.4 \pm 2.0 \pm 4.4$	46.3±3.4±7.3	89.1±4.9±16.8	$169.8 \pm 6.4 \pm 27.1$
Expected WW Signal	29.5±0.3±3.0	52.5±0.4±4.9	$150.5 \pm 0.7 \pm 13.4$	$232.4 \pm 0.9 \pm 21.5$
Significance (S/\sqrt{B})	5.0	7.7	15.9	17.8

WW Cross Section - H. Yang

Kinematic Distributions of WW Candidates

WW Cross Section - H. Yang

Sources of Systematic Uncertainties

	Sources	$e^+e^-E_{\mathrm{T}}^{\mathrm{miss}}$	$\mu^+\mu^- E_{ m T}^{ m miss}$	$e^{\pm}\mu^{\mp}E_{\mathrm{T}}^{\mathrm{miss}}$
	Luminosity	3.7%	3.7%	3.7%
	Cross-section (theory)	5%	5%	5%
	PDF	1.2%	1.4%	1.4%
	Trigger	1.0%	1.0%	1.0%
Lanton nooon Fff	Lepton p_T smearing	0.2%	0.1%	0.1%
E/P scale / smearing	Reco eff. scale factors	1.4%	0.0%	0.7%
0	E_T/p_T scale correction	0.9%	0.0%	0.4%
Lepton ID and	Particle ID eff. scale factors	3.3%	1.4%	1.6%
Isolation Eff.	Isolation	4.0%	2.0%	3.0%
Missing Transverse	E_T^{miss} in-time contribution	3.5%	3.9%	1.4%
Energy uncertainty	E_T^{miss} out-of-time contribution	0.5%	0.5%	0.3%
	Jet-veto	4.8%	4.8%	4.8%
Dominant Syst	Total experimental uncertainty	8.1%	6.7%	6.2%
Uncertainties	Overall uncertainty			
	for WW signal estimation	10.3%	9.2%	8.9%

WW Fiducial Phase Space

- Measure "fiducial" cross section to minimize the dependence on theoretical prediction. The WW fiducial phase space requirements:
 - muon cuts: $p_{\rm T} > 20$ GeV, $|\eta| < 2.4$
 - electron cuts: $p_{\rm T} > 20$ GeV, $|\eta| < 1.37$ or $1.52 < |\eta| < 2.47$
 - leading electron in *ee* channel and electron in $e\mu$ channel: $p_T > 25$ GeV
 - jet cuts: $p_{\rm T} > 30$ GeV, |y| < 4.5, $\Delta R(e, \text{jet}) > 0.3$
 - event cuts:
 - $\mu\mu$ channel: $p_{T,Rel}^{\nu+\bar{\nu}} > 45$ GeV, $m_{\mu\mu} > 15$ GeV and $|m_{\mu\mu} m_Z| > 15$ GeV
 - *ee* channel: $p_{T,Rel}^{\nu+\bar{\nu}} > 40$ GeV, $m_{ee} > 15$ GeV and $|m_{ee} m_Z| > 15$ GeV

-
$$e\mu$$
 channel: $p_{T,Rel}^{\nu+\bar{\nu}} > 25 \text{ GeV}, m_{e\mu} > 10 \text{ GeV}$

$$A_{WW} = \frac{N_{MC}^{fiducial}}{N_{MC}^{total}}$$
$$C_{WW} = \frac{N_{MC}^{selected}}{N_{MC}^{fiducial}}$$

$$\varepsilon_{WW} = A_{WW} \times C_{WW}$$

Channels	$A_{WW} imes C_{WW}$	A_{WW}	C_{WW}
evev	$0.039 \pm 0.001 \pm 0.004$	$0.090 \pm 0.001 \pm 0.007$	$0.432 \pm 0.006 \pm 0.035$
μνμν	$0.069 \pm 0.001 \pm 0.006$	$0.086 \pm 0.001 \pm 0.005$	$0.802 \pm 0.006 \pm 0.066$
evμv	$0.100 \pm 0.001 \pm 0.008$	$0.167 \pm 0.001 \pm 0.011$	$0.596 \pm 0.005 \pm 0.040$
		Stat. error Sy	st. error

WW Fiducial Cross Section

- ♦ The WW fiducial phase space acceptance A_{WW} and correction factor C_{WW}
 - ✤ Systematic uncertainties of A_{WW} include
 - ◆ PDF uncertainty (~1.2% 1.4%)
 - Renormalization and factorization scales uncertainty ($\sim 1.5\% 5.3\%$)
 - Parton shower/fragmentation modeling uncertainty (~4.8%)
 - Systematic uncertainties of C_{WW} include (slide p17)
 - Uncertainty associated with jet veto cut is replaced by JES uncertainty (~4.5%)
 - ✤ Renormalization and factorization scales uncertainty (~2.0%)

The measured WW fiducial cross sections in three dilepton channels.

$$L(\sigma_{WW}^{i,fid}) = \ln \frac{e^{-(N_s^i + N_b^i)} \times (N_s^i + N_b^i)^{N_{obs}^i}}{N_{obs}^i!}, \ N_s^i = \sigma_{WW \to \ell \nu \ell \nu}^i \times \mathscr{L} \times C_{WW}^i$$

Channels	expected σ^{fid} (fb)	measured σ^{fid} (fb)	$\Delta \sigma_{stat}$ (fb)	$\Delta \sigma_{syst}$ (fb)	$\Delta \sigma_{lumi}(\mathrm{fb})$
evev	66.8	90.1	± 18.9	± 11.3	\pm 3.3
μνμν	63.8	62.0	± 12.1	± 10.7	± 2.3
evμv	245.1	252.0	± 24.6	\pm 29.4	± 9.3

WW Production Cross Section

★ The total WW production cross section is determined from three dilepton channels (e^+e^- , $\mu^+\mu^-$, $e\mu + E_T^{miss}$) by maximizing the log-likelihood function using 1.02 fb⁻¹ data.

_	$L(\sigma_{WW}^{tot}) = \ln$	$n\prod_{i=1}^{3} \frac{e^{-(N_{s}^{i}+N_{b}^{i})} \times (N_{s}^{i}+N_{b}^{i})}{N_{obs}^{i}!}$	$\frac{(i_{b})^{N_{obs}^{i}}}{N_{s}^{i}}$, N_{s}^{i} =	$\sigma_{WW}^{tot} imes Br^i$	$ imes \mathscr{L} imes \pmb{arepsilon}^i_{WW}$
-	Channels	Total cross-section (pb)	$\Delta \sigma_{stat}(pb)$	$\Delta \sigma_{syst}(pb)$	$\Delta \sigma_{lumi}(\text{pb})$
-	evev	62.1	\pm 13.5	± 9.1	± 2.3
	μνμν	44.7	\pm 8.7	\pm 7.7	\pm 1.7
	evμv	47.3	\pm 4.8	\pm 6.2	± 1.8
_	Combined	48.2	\pm 4.0	\pm 6.4	± 1.8

- * Fitted σ_{WW} = 48.2 ± 4.0 (stat) ± 6.4 (syst) ± 1.8 (lumi) pb
 - Dominated by systematic uncertainties, mainly come from uncertainties of data driven background estimations

* NLO SM prediction: σ_{WW} (SM) = 46 ±3 (theory) pb

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2011-110/

Summary

- * The WW production cross section and fiducial cross section are measured using three dilepton channels (e^+e^- , $\mu^+\mu^-$, $e\mu + E_T^{miss}$).
- Total integrated luminosity of 1.02 fb⁻¹ data collected by the ATLAS detector in 2011 are used for this analysis. 414 WW candidates are observed, 232 WW signal and 170 backgrounds events are expected.
- The measured WW cross section is consistent with NLO SM prediction (46 ±3 pb):

 $\sigma_{WW} = 48.2 \pm 4.0 \text{ (stat)} \pm 6.4 \text{ (syst)} \pm 1.8 \text{ (lumi) pb}$

We expect to extract limits on anomalous TGC (WWγ, WWZ) based on 1.02 fb⁻¹ data soon.

Backup Slides

WW $\rightarrow \ell \nu \ell \nu$ Signal Acceptance

Cuts	ee Channel		$\mu\mu$ Channel		eµ Channel	
	evev	$ au u \ell u$	μνμν	$ au u \ell u$	evμv	$ au u \ell u$
Total Events	552.3	211.4	552.3	211.4	1104.5	423.1
2 leptons (SS+OS)	116.6	11.8	229.0	25.5	332.7	35.5
2 leptons (OS)	115.7	11.6	229.0	25.5	331.3	35.3
leading electron $Pt > 25 GeV$	114.4	11.4	-	-	305.5	30.2
trigger matching	114.2	11.4	231.9	25.8	305.3	30.2
$M_{\ell\ell} > 15 \text{ GeV}, M_{e\mu} > 10 \text{ GeV}$	113.5	11.3	229.7	25.6	304.5	30.1
Z mass veto	88.2	8.4	176.6	19.0	-	-
$E_{\rm T, Rel}^{\rm miss}$ cut	38.6	2.9	69.7	5.2	193.2	16.1
Jet veto (Num of Jet=0)	27.8	1.7	49.4	3.1	139.6	10.9
W^+W^- Acceptance	5.0%	0.8%	8.9%	1.5%	12.6%	2.6%

- The numbers are normalized to the data integrated luminosity of 1.02 fb⁻¹ using the SM W⁺W⁻ cross sections.
- * MC efficiency correction factors ($\epsilon_{data}/\epsilon_{MC}$) have been applied.

ATLAS Detector

WW Cross Section - H. Yang

Data. Trigger, Physics Objects

GRL (35.2 pb⁻¹)

Trigger:

Single e with $E_T > 15 \text{ GeV}$ Single m with $p_T > 13 \text{ GeV}$ Efficiency plateau $E_T(p_T) > 20 \text{ GeV}$ Dilepton $\epsilon(data)/\epsilon(MC) = 1.0 (\sigma_{syst} < 0.1\%)$

Primary vertex:

Vertex with max. sum track p_T^2 $N_{track} > = 3$ (with $p_T > 150$ MeV) Two leptons from primary vertex MC pile-up reweighted to reproduce data

'RobusterTight' electron

 $\begin{array}{l} {\sf E}_{\sf T} > 20 \; {\sf GeV}; \; |\eta| < 2.5, \; (\text{remove [1.37--1.52]}) \\ {\sf Isolation: \; Sum \; {\sf E}_{\sf T}{}^i_{\sf Cone=0.3} < 6 \; {\sf GeV} \\ {\sf d0}/{\sigma}{\sf d0} < 10; \; |z0| < 10 \; {\sf mm} \\ {\epsilon}({\sf data})/{\epsilon}({\sf MC}) = 0.97 \; (\text{with } \sigma_{syst} \sim 5.3\%) \end{array}$

'Combined' Muon:

Jet:

Anti-Kt, R = 0.4; $|\eta| < 3.0$; $p_T > 20 \text{ GeV}$ Discarded if ΔR (jet, electron) < 0.2 Jet veto SF = 0.97 (with $\sigma_{syst} \sim 6.0\%$)

E_Tmiss:

MET_LocHadTopo ($|\eta|$ <4.5), account for μ 's

 $E_{T, \text{ Rel}}^{miss} = \begin{cases} E_T^{miss} \times \sin\left(\Delta\phi_{\ell,j}\right) & \text{if } \Delta\phi < \pi/2\\ E_T^{miss} & \text{if } \Delta\phi \ge \pi/2 \end{cases}$

WW Cross Section - H. Yang

Diboson Production Cross Sections

(*) $E_T^{\gamma} > 7$ GeV and $\Delta R(\ell, \gamma) > 0.7$, for W/Z e/ μ decay channels only (#) $E_T^{\gamma} > 10$ GeV and $\Delta R(\ell, \gamma) > 0.7$, for W/Z e/ μ decay channels only

→ Diboson production rates at LHC (7 TeV) are ~3-5 times of Tevatron

→ \sqrt{s} at LHC is higher than Tevatron (3.5x-7x) which greatly enhances the detection sensitivity to anomalous triple-gauge-boson couplings

Generic Search for New Particles with Diboson through VBF Process

- Vector-Boson Fusion (VBF) Process: $qq \rightarrow q_{tag} q_{tag} V V (V = W, Z)$
 - Two vector bosons with two tagged jets in F/B regions
 - Production rate ~ 2.5% of qq \rightarrow WW (WHIZARD, PDF MRST2004)
- An example of ATLAS sensitivity to a 850 GeV spin-zero resonance produced in VBF process (at 14 TeV).

WW Cross Section - H. Yang

Search for new physics through Anomalous TGCs with Diboson Events

• Effective Lagrangian with charged/neutral triple-gauge-boson interactions

$$L/g_{WWV} = ig_1^V (W_{\mu\nu}^* W^{\mu} V^{\nu} - W_{\mu\nu} W^{*\mu} V^{\nu}) + ik^V W_{\mu}^* W_{\nu} V^{\mu\nu} + \frac{i\lambda^V}{M_W^2} W_{\rho\mu}^* W_{\nu}^{\mu} V^{\nu\rho}$$

$$L = -\frac{e}{M_Z^2} [f_4^V(\partial_\mu V^{\mu\beta}) Z_\alpha(\partial^\alpha Z_\beta) + f_5^V(\partial^\sigma V_{\sigma\mu}) \tilde{Z}^{\mu\beta} Z_\beta]$$

- The anomalous parameters: Δg_1^{Z} , $\Delta \kappa_z$, λ_z , $\Delta \kappa_\gamma$, λ_γ , f_4^{Z} , f_5^{Z} , f_4^{γ} , f_5^{γ} , h_3^{Z} , h_4^{Z} , h_3^{γ} , h_4^{γ}
- Complementary studies through different Diboson channels ($\hat{\mathbf{s}} = M^2_{vv}$)

Production	$\Delta \kappa_{z}, \Delta \kappa_{\gamma} \text{ term}$	∆g ₁ ^z term	$\lambda_{z}, \lambda_{\gamma}$ term
WW	grow as ŝ	grow as \$ ¹ / ₂	grow as ŝ
WZ	grow as $\hat{s}^{\frac{1}{2}}$	grow as ŝ	grow as ŝ
Wγ	grow as $\hat{s}^{\frac{1}{2}}$		grow as ŝ

Limits on Anomalous Couplings

		λ	Z	$\Delta \kappa_z$		$\Delta \mathbf{g_1^z}$		$\Delta \kappa_{\gamma}$	λ_{γ}
١	VW (D0, 1.1fb ⁻¹)	λ _Z =	= λ _γ	$\Delta \kappa_z = \Delta \kappa_\gamma$		[-0.14, 0.30]		[-0.54, 0.83]	[-0.14, 0.18]
١	VW (LEP)	λ _z =	= λ _γ	$ = \lambda_{\gamma} \qquad \Delta \kappa_{z} = \Delta g_{1}^{Z} \\ tan^{2} \theta_{y} $		[-0.051,0.034]		[-0.105,0.069]	[-0.059,0.026]
١	NZ (D0, 4.1fb ⁻¹)	[-0.075	,0.093]	[-0.376,0.0	686]	[-0.053,0.15	6]		
١	NZ (CDF, 1.9fb ⁻¹)	[-0.14	,0.15]	[-0.81,1.2	29]	[-0.14,0.25	5]		
١	Wγ (D0, 0.7 fb ⁻¹)							[-0.51,0.51]	[-0.12,0.13]
	Λ = 1.2 TeV			f ₄ ^Z	.12] [-0.13,0.12]			f ₄ γ	f_5^{γ}
	ZZ (CDF, 1.9fb ⁻¹)		[-0.1	2,0.12]				-0.10,0.10]	[-0.11,0.11]
	ZZ (D0, 1.1fb ⁻¹)		[-0.2	28,0.28]	[-0	[-0.31,0.29]		-0.26,0.26]	[-0.30,0.28]
	ZZ (LEP combine	d)	[-0.3	80,0.30]	[-0	[-0.34,0.38]		-0.17,0.19]	[-0.32,0.36]
	Λ = 1.5 TeV			h ₃ ^z		h ₄ ^z		h ₃ γ	h₄γ
	Zγ (CDF, 5.0fb ⁻¹)		[-0.017,0.0167]		[-0.0	006,0.0005]	[-	-0.017,0.016]	[-0.0006,0.0006]
	Zγ (D0, 3.6fb ⁻¹)		[-0.03	33,0.033]	[-0.0	017,0.0017]	[-	-0.033,0.033]	[-0.0017,0.0017]
	Zγ (LEP combined	d)	[-0.3	30,0.30]	[-(0.34,0.38]).34,0.38]		[-0.32,0.36]