

Measurement of the Z/γ^* transverse momentum distribution in pp collisions at $\sqrt{s} = 7\text{TeV}$ with the ATLAS detector

Jianbei Liu

On behalf of the ATLAS collaboration

DPF 2011

August 10, 2011

Outline

- Introduction
- Collision data and Simulation
- Analysis
 - Event selection
 - Background estimation
 - Unfolding
 - Systematics
- Results
- Summary and Conclusions

Introduction (1/2)

• The transverse momenta of Z/γ^* bosons (P_T^Z) produced in pp collisions are a result of the QCD initial state radiation.

- P_T^Z is sensitive to the nature of the QCD radiation.
 - An excellent testing ground for QCD predictions
 - Soft gluon resummation in low P_T^Z
 - Fixed order pQCD in high P_T^Z
 - An ideal laboratory for evaluating the phenomenology of vector boson production (e.g. event generators).

Introduction (2/2)

- We measure the normalized P_T^Z distribution within the fiducial phase space using the Z-> $\mu\mu$ and Z->ee decays.
 - "normalized" measurement $\frac{1}{\sigma} \frac{d\sigma(Z)}{dp_T(Z)}$
 - A lot of systematic uncertainties cancel out leading to a better precision.
 - Fiducial phase space
 - $P_t^{e/\mu}$ >20 GeV, $|\eta|$ < 2.4, 66 GeV < M_{\parallel} < 116 GeV
 - Very close to the phase space defined by the event selection -> minimal model-dependent extrapolation
 - Leptonic decays
 - well reconstructed final states with little background making a precision measurement possible.
- We also produce correction factors to extrapolate the fiducial P_T^{Z} to the full phase space.

Event Samples and Selection

Event samples

- Collision data
 - 7 TeV pp collisions recorded with ALTAS in 2010
 - ee channel: 35 pb⁻¹, μμ channel: 40 pb⁻¹
 - Simulation
 - Pythia Z->μμ and Z->ee with pileup simulated

Event selection

- A good primary vertex
- Lepton Selection
 - Muon: $P_T>20$ GeV, $|\eta|<2.4$, isolated
 - Electron: $E_T > 20 \text{GeV}$, $|\eta| < 1.37 \text{ or } 1.52 < |\eta| < 2.4$
- Z->II ($I=e/\mu$) selection
 - · two good electrons or two good muons
 - Oppositely charged
 - 66 GeV < M_{II} < 116 GeV

M_{II} after final selection

 Good data and MC agreement in the di-lepton invariant mass distributions

P_T(II) after final selection

- Observed $P_T(II)$ is well described by the simulation.
- Very low level of background with slight P_T^Z dependence
 - Background estimation
 - Z->tautau, W->Iv and ttbar: simply using MC
 - QCD: data driven approach
 - Total background
 - ee channel: 1.5%±0.6%, μμ channel: 0.4%±0.2%

P_T^Z Unfolding

- Bin-by-bin unfolding is used to correct the observed P_T^{Z} for detector effects and QED FSR.
 - 0-350 GeV with 19bins
 - Bin purity >60% at low P_T^Z and >90% at P_T^Z
- Bayesian/Matrix unfolding methods are tried as well for cross-check and systematics.
- Observed P_T^Z is unfolded to different levels of lepton QED FSR corrections within the fiducial phase space.

bare: after QED FSR radiation.

dressed: "bare" + photons in cone with $\Delta R < 0.1$.

propagator: before QED FSR.

• The "propagator" unfolded P_T^Z from the ee and $\mu\mu$ channels are combined to increase the measurement sensitivity.

e or μ

QED FSR

Systematics

- Lepton efficiencies
 - -1%-3% in most of the P_T^Z bins
- Lepton energy/momentum scale and resolution

– Scale:

0.2%-4% (ee), $\sim 0.4\%$ (µµ)

– Resolution:

~0.5% (ee), 0.1%-0.7% (µµ)

Unfolding bias

- P_T^Z<6 GeV:

3.6% (ee),

4.7% (μμ)

 $- 6 \text{ GeV} < P_T^Z < 100 \text{ GeV}$:

2.0% (ee),

1.3% (μμ)

 $- P_{T}^{Z} > 100 \text{ GeV}$:

4.2% (ee),

2.9% (μμ)

Others

Background estimation: 0.5% (ee),

0.6% (µµ)

– Pileup modeling:

0.3%

– QED FSR corrections:

0.6%

normalized P_T^Z distribution

p_T^Z bin	$1/\sigma_{ m ref}^{ m fid}{ m d}\sigma_{ m ref}^{ m fid}(pp o Z/\gamma^* o \ell^+\ell^-)/{ m d}p_T^Z~({ m GeV}^{-1})$											
(GeV)	$Z/\gamma^* ightarrow e^+e^-$			uncert. $(\%)$		$Z/\gamma^* o$	$Z/\gamma^* o \mu^+\mu^-$		uncert. $(\%)$			
	propag.	dressed	bare	k	stat.	syst.	propag.	dressed	bare	k	stat.	syst.
0 - 3	3.48	3.40	3.21	$\cdot 10^{-2}$	3.3	4.7	3.75	3.66	3.58	$\cdot 10^{-2}$	2.6	5.0
3 - 6	5.85	5.78	5.60	$\cdot 10^{-2}$	2.4	3.3	5.81	5.74	5.68	$\cdot 10^{-2}$	2.0	4.0
6 - 9	4.61	4.62	4.64	$\cdot 10^{-2}$	2.7	2.3	4.67	4.68	4.69	$\cdot 10^{-2}$	2.1	1.6
9 - 12	3.43	3.46	3.56	$\cdot 10^{-2}$	3.1	2.4	3.50	3.54	3.58	$\cdot 10^{-2}$	2.4	1.6
12 - 15	2.93	2.97	3.09	$\cdot 10^{-2}$	3.3	2.7	2.67	2.72	2.76	$\cdot 10^{-2}$	2.8	1.7
15 - 18	2.04	2.08	2.16	$\cdot 10^{-2}$	3.9	3.0	2.13	2.17	2.20	$\cdot 10^{-2}$	3.1	1.7
18 - 21	1.64	1.67	1.73	$\cdot 10^{-2}$	4.4	3.3	1.69	1.72	1.74	$\cdot 10^{-2}$	3.5	1.8
21 - 24	1.32	1.33	1.37	$\cdot 10^{-2}$	4.8	3.6	1.35	1.36	1.37	$\cdot 10^{-2}$	4.0	1.8
24 - 27	1.08	1.08	1.11	$\cdot 10^{-2}$	5.5	3.8	1.15	1.16	1.17	$\cdot 10^{-2}$	4.3	1.9
27 - 30	1.02	1.03	1.03	$\cdot 10^{-2}$	6.5	4.0	0.87	0.88	0.88	$\cdot 10^{-2}$	5.0	2.0
30 - 36	7.22	7.24	7.26	$\cdot 10^{-3}$	4.8	4.2	6.45	6.46	6.45	$\cdot 10^{-3}$	4.1	2.1
36 - 42	4.89	4.88	4.85	$\cdot 10^{-3}$	5.8	4.5	4.63	4.63	4.62	$\cdot 10^{-3}$	4.9	2.2
42 - 48	3.66	3.64	3.59	$\cdot 10^{-3}$	7.0	4.8	3.97	3.95	3.94	$\cdot 10^{-3}$	5.3	2.4
48 - 54	3.26	3.25	3.20	$\cdot 10^{-3}$	7.8	5.0	2.90	2.88	2.86	$\cdot 10^{-3}$	6.2	2.6
54 - 60	2.14	2.13	2.08	$\cdot 10^{-3}$	9.2	5.4	2.14	2.13	2.11	$\cdot 10^{-3}$	7.2	2.7
60 - 80	1.21	1.20	1.17	$\cdot 10^{-3}$	6.5	5.7	1.31	1.30	1.28	$\cdot 10^{-3}$	5.1	3.0
80 -100	5.69	5.63	5.44	$\cdot 10^{-4}$	9.8	5.9	5.52	5.47	5.40	$\cdot 10^{-4}$	7.8	3.5
100-180	1.74	1.73	1.67	$\cdot 10^{-4}$	9.6	6.1	1.52	1.51	1.49	$\cdot 10^{-4}$	7.5	4.4
180 - 350	0.78	0.77	0.73	$\cdot 10^{-5}$	27.0	7.8	1.14	1.14	1.11	$\cdot 10^{-5}$	18.9	6.6

- Acceptance and lepton efficiency: $\mu\mu$ > ee, so more statistics in $\mu\mu$, thus for statistical uncertainties: $\mu\mu$ < ee
- Electron energy scale contributes a lot to the systematic uncertainties in ee in most of the bins.

Comparison between channels

Good agreement between the two channels within uncertainties

Combined P_T^Z distribution

$\langle p_T^Z angle$	$\frac{1}{\sigma^{\text{fid}}} \frac{d\sigma^{\text{fid}}}{dp_w^Z}$	stat.	syst.	A_c^{-1}	unc.
(GeV)	(GeV^{-1})	(%)	(%)		(%)
0 - 3	0.0366	2.0	4.7	1.047	3.7
3 - 6	0.0586	1.5	3.6	1.029	1.8
6 - 9	0.0466	1.7	1.5	1.014	1.5
9 - 12	0.0348	1.9	1.6	0.999	1.5
12 - 15	0.0277	2.2	1.7	0.999	1.4
15 - 18	0.0210	2.5	1.7	0.990	1.5
18 - 21	0.0167	2.8	1.8	0.989	1.5
21 - 24	0.0133	3.1	1.9	0.990	1.5
24 - 27	0.0112	3.4	2.0	0.994	2.3
27 - 30	0.0092	4.0	2.1	0.988	2.3
30 - 36	0.0067	3.2	2.1	0.987	3.2
36 - 42	0.0047	3.8	2.3	0.979	3.9
42 - 48	0.0038	4.2	2.4	0.965	4.3
48 - 54	0.0030	4.9	2.5	0.950	4.4
54 - 60	$2.1 \cdot 10^{-3}$	5.7	2.7	0.938	5.3
60 - 80	$1.3 \cdot 10^{-3}$	4.0	2.8	0.910	5.3
80 -100	$5.5 \cdot 10^{-4}$	6.1	3.1	0.894	5.3
100-180	$1.6 \cdot 10^{-4}$	5.9	3.7	0.826	5.4
180-350	$9.8 \cdot 10^{-6}$	15.6	5.4	0.672	5.6

- The two channels are combined using a χ^2 minimization method that takes into account the correlated systematic uncertainties.
 - χ^2 /d.o.f = 17.0/19 -> good compatibility of the measurements in the two channels
- A_c^{-1} = correction factor needed to extrapolate the fiducial measurement to the full phase space.

Comparison with theoretical predictions

- FEWZ (fixed order pQCD prediction)
 - Diverging in low P_T^Z region.
 - Its $O(\alpha_s^2)$ prediction is lower than data by ~10%. But still comparable with uncertainty.
 - 26-36% $O(\alpha_s^2)$ corrections for $P_T^Z > 18 GeV$ with significant uncertainties indicate nonnegligible missing higher order corrections.
- RESBOS (combination of resummed and fixed order pQCD calculation)
- In good agreement with data over the entire P_T^Z range indicating the importance of resummation even at relatively large P_T^Z .
- Slightly higher than data in $P_T^{\, Z}$ of [10,40] GeV and slightly lower than data when $P_T^{\, Z}$ above 40 GeV

Comparison with Generators

- ALPGEN and SHERPA implement tree-level diagrams up to 5 additional hard partons. So they both give good description of data up to large $P_{\scriptscriptstyle T}{}^{\rm Z}$.
- MC@NLO and POWHEG deviate from data at low and high P_T^Z .
- PYTHIA describes data very well over the entire P_T^Z range.

Summary and Conclusions

- Normalized P_T^Z distribution has been measured up to P_T^Z =350 GeV in both Z->ee and Z-> $\mu\mu$ channels.
- The measurements in the two channels at the "propagator" level are quite compatible, and are combined to increase the measurement sensitivity.
- RESBOS agrees with the measurement. FEWZ is below the measurement by about 10%.
- The measurement is found to be in good agreement with SHERPA, ALPGEN and PYTHIA.
- A better measurement is expected with more data available and novel techniques (e.g. ϕ^*_{η}) to be used.

Backup

ATLAS Detector

Collision data and MC

Collision data

- Triggered on single leptons (E_Te>15GeV or P_Tμ>13GeV)
- 7TeV pp data recorded in 2010 with all relevant subdetectors fully operational
- 35pb^{-1} for ee channel and 40pb^{-1} for $\mu\mu$ channel

MC samples

- Signal (Z->mm and Z->ee) generation
 - Pythia (MRST2007LO*) as default, MC@NLO(CTEQ6.6)/HERWIG/Jimmy
- Background generation
 - W->Iv: Pythia;
 - Z->tautau: Pythia, MC@NLO
 - Dijet: Pythia
 - ttbar: MC@NLO, PowHeg;
- Detector simulation based on GEANT4
- Pileup simulated by overlaying minimum bias MC events

Event Selection

- A good primary vertex (PV)
- Lepton selection
 - Muon
 - Reconstructed by associating a track in the Muon spectrometer track with an track in the inner detector.
 - $P_T > 20 \text{GeV}$, $|\eta| < 2.4$
 - Isolated: $\Sigma P_T(\text{cone 0.2})/P_T^{\mu} < 0.2$
 - Originated from PV: $|z_{w,r,t,PV}| < 5mm \&\& |d_{w,r,t,PV}| < 1mm$

Electron

- Electron identification based on the information from the sub-detectors of ID/ECal/HCal
- E_T >20GeV, $|\eta|$ <1.37 or 1.52< $|\eta|$ <2.47

Z->II selection

- Exactly two good electrons or at least two good muons
- Oppositely charged
- $66 \text{GeV} < M_{\parallel} < 116 \text{GeV}$

Background Estimation

- Contributions from Z->tautau, W->Iv and ttbar are estimated using MC and normalized to the data integrated luminosities using NNLO or NLL-NLO cross sections.
- Data driven methods are used for QCD multiple-jet
 - Total contribution

ee channel

- fit signal and QCD templates to the MII with loosened electron identification requirements.
- scale the result from the fit.
- Background shape in P_T^Z is determined using a QCD- enriched di-electron sample with inverted electron identification criteria and MII cut

	40 60 GeV	66 116 GeV
isolated	В	A (Signal)
inverted-isolation	D	С

μμ channel

- ABCD method for total contribution.
- Background shape from region C.

Details of Generators

- ALPGEN
 - v2.13,
 - interfaced to HERWIG-v6.510 for parton shower and to JIMMY-v4.31 for underlying events
 - CTEQ6L1
 - tree-level diagrams up to 5 additional hard partons implemented
- SHERPA
 - v1.2.3,
 - CTEQ66
 - tree-level diagrams up to 5 additional hard partons implemented
- MC@NLO
 - interfaced to HERWIG and JIMMY
 - CTEQ66
- POWHEG
 - interfaced to PYTHIA
 - CTEQ66
- PYTHIA
 - v6.4 with pt-ordered parton shower
 - MRST2007LO*
 - underlying event parameters tuned to Tevatron data