

DPF-Providence August 10, 2011 Jose Alonso MIT

Use decay-at-rest neutrino beams, and the planned 300 kton H₂O detector (Gd doped) at the Deep Underground Science & Engineering Laboratory to search for CP violation in the neutrino sector

<u>DAESALUS</u>

DAE
 ALUS Concept

THESIS

- A new generation of cyclotron-based neutrino sources for decay-at-rest (from pi-mu chain) can become valuable research tools
- TECHNOLOGY GOALS
- Compact
- Cost-effective
- Efficient, reliable, economical to operate

Collaboration Resources:

DAEδALUS co-spokespersons:

- Janet Conrad, MIT
- Mike Shaevitz, Columbia
- Accelerator Team:
- Luciano Calabretta, LNS-Catania
- Bill Barletta, MIT
- Andreas Adelmann, PSI
- Jose Alonso, MIT
- Thx to:
- Georgia Karagiorgi, Columbia

Outline

- Physics basis for DAE δ ALUS experiment
- Description of experiment
- Sensitivity studies
- Complementarity between DAE δ ALUS and LBNE
- Accelerator requirements/options for DAE δ ALUS
- Accelerator design based on H₂⁺
- Status and planned work
- Summary

Neutrino Oscillation and δ_{CP}

Potential CP-violation in the lepton sector is accessible through:

 $\delta \rightarrow -\delta$ for neutrinos \rightarrow antineutrinos

$$\Delta_{ij} = \Delta m_{ij}^2 L/4E_{\nu}$$

Long Baseline Neutrino Experiment (LBNE)

LBNE – Long Baseline Neutrino Experiment

Beam from Fermilab

Aimed at detectors in South Dakota

Decay-At-Rest Source

- NO electron anti-neutrinos!
 - $\overline{\nu_e}$ contribution (π^- decay) is insignificant: <10⁻²%

DAE δ ALUS Experiment

Uses multiple π+ and μ+ decay-at-rest neutrino beams, and the planned 300 kton H2O detector (Gd-doped) at the Deep Underground Science & Engineering Laboratory

AEδALUS

Nominally, ~4x10²² neutrinos/flavor/accelerator/year

DAE δ ALUS Experiment

Uses multiple π+ and μ+ decay-at-rest neutrino beams, and the planned 300 kton H2O detector (Gd-doped) at the Deep Underground Science & Engineering Laboratory

AEδALUS

Short baseline minimizes matter effects

Nominally, ~4x10²² neutrinos/flavor/accelerator/year

Oscillation Signal

Look for $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ via inverse-beta-decay (IBD): $\overline{v}_{e}+p \rightarrow n+e^{+}$ Gd n capture efficiency ~67%

Sensitivity Comparisons

Sensitivity Comparisons

Sensitivity Comparisons

DAE\deltaALUS

AEδALUS

LBNE

Synergistic Combination

DAE_dALUS alone

(10 year data collection)

AEδALUS

$DAE\delta ALUS + LBNE$ (10 yr DAE δ ALUS + 10 yr LBNE v only)

Accelerator Requirements

Can they be built?

Accelerator Requirements

- Beam on target: Protons
 - Most efficient beam for pion production
- Beam Energy: ~ 800 MeV
 - Produce pions in "delta plateau"
 - Optimize:

EδALUS

- Nuclear mean free path (~ 15 cm)
- Energy loss
- Minimize decay in flight (π background)

Accelerator Requirements

- Beam Power:
 - 1.5 km site: 1 MW average
 - 8 km site: 2 MW average
 - 20 km site: 5 MW average
- Accelerator Duty Factor: ~20%
 - Instantaneous power is ×5 average power
 - Can be optimized and time structure fairly arbitrary
- High Reliability: both running & handling
- Cost: As low as possible

Our Needs vs. Existing Machines (Average Power Needs)

- LAMPF (Linac): 800 MeV, 1 mA (12% DF)
- PSI (Cyclotron): 590 MeV, 2.2 mA (100% DF)

*I*n Current (Average)

• SNS (Linac): 1 GeV, 1 mA (6% DF)

EδALUS

ln Energy [per nucleon]

Our Needs vs. Existing Machines (Peak Power Needs)

- LAMPF (Linac): 800 MeV, 8 mA peak
- PSI (Cyclotron): 590 MeV, 2.2 mA
- SNS (Linac): 1 GeV, 17 mA peak

DAEδALUS
 Near ~ 5 mA peak
 Far ~ 25 mA peak

AEδALUS

ln Energy [per nucleon]

Issues with High Intensities

- Beam Loss
 - Thermal power damages components
 - E.g. 0.1% of 1 MW beam (1 kW) will cause problems
 - Activation causes problems for maintenance
 - PSI limits uncontrolled loss to 200 watts per cyclotron vault
- Space-charge Emittance Growth
 - Makes controlling beam loss more difficult
 - Primarily a problem at very low energies
 - current > few mA, at energy < 1 MeV

Design Considerations

- Low Energies
 - Very careful accelerator design for minimizing space-charge blowup
 - High brightness ion source
 - Good focusing, high acceleration rates
- High Energies
 - Careful beam handling for clean extraction
 - Large apertures, minimize chances of beam hitting anything

Technologies explored

- Linacs
 - Cleanest of technologies
 - but there are issues of size and cost
- Cyclotrons
 - Superconducting (proton) Cyclotron
 - Extension of PSI
 - Stacked (proton) Cyclotron
 - H₂⁺ Cyclotron -- reduces many problems related to beam loss and extraction compared to other designs

Cyclotron Experience

- PSI is most powerful in the world
 - 590 MeV protons
 - 2.2 mA
 - 1.3 MW

Proton Accelerator Complex Paul-Scherrer-Institute Switzerland

Source SINQ

Beam at High Energy End

Also Must Have Very Large RF System

- High accelerating voltage promotes larger turn separation
 - $-\Delta E = 2 \text{ MeV/turn}$
 - 500 kV/cavity

H₂⁺ Ring Cyclotron Promising Design from 1990's

- Concept proposed by Luciano Calabretta, Catania
 - Response to C. Rubbia idea for high-power cyclotrons for ADS
 - Reports in European Particle Accelerator Conference Calabretta et al: PAC 99 & EPAC 2000
- 1 GeV, ~6 mA
- High rigidity for H_2^+
 - Superconducting magnets keep size reasonable
- Efficient extraction (via stripping)
 - Substantially less RF requirements no need for clean turn separation

Status of Design

• arXiv: 1107:0652

System Components

- Ion Source
 - High brightness H_2^+ options
 - Multicusp, microwave
- Injector Cyclotron
 - Axial injection
 - "Classical" extraction at 50 MeV/n
- Ring Cyclotron
 - Superconducting $(B_{max} \sim 6T)$
 - Stripping extraction
- Target/beam dump
 - Shaped graphite/copper/water-cooled
 - To absorb 5 MW

Ion Source Options

Either produces 20-50 mA (CW) H_2^+ *with good emittance*

AEδALUS

Ion Source Challenges

- Optimizing H₂⁺ production
- Obtaining steady, reliable currents >30 mA

Ion Source Challenges

- Optimizing H₂⁺ production
- Obtaining steady, reliable currents >30 mA
- Quenching of high ν (loosely-bound) vibrational states
 - 17 bound states
 - -v > -8 (binding energy < -1 eV) may undergo Lorentz stripping at high energies
 - $\sim 10\%$ of beam could be in these states
 - Mixing He, Ne in source plasma shown to adequately quench loosely-bound states
 - Must develop suitable diagnostic tools!

Injector Cyclotron

Axial injection channel

DAESALUS

Injector Cyclotron

AEδALUS

D

Spiral inflector

Injector Cyclotron

First

10 r

Spiral inflector

10

Injector Cyclotron Challenges

- Efficiency of capture
 - Space charge blowup
 - low energy
 - high current
- Excessive beam loss
 - Inject ~20 mA, capture ~3 mA
 - this considered "good"!
- Emittance growth
 - Problems in latter stages

Strategies

• Central Region tests

- Collaborations with BEST Cyclotrons

Vancouver, BC mfg isotope cyclotrons

Superconducting Ring Cyclotron

Cyclotron Parameters

Magnet – 8 sector

14 m steel diameter

4.9 m extraction radius

6.3 T B_{max}

RF – 4 single-gap (PSI style)

> 2 MeV energy gain/turn

Vacuum – $< 10^{-9}$ torr

AEδALUS

avoid gas-stripping losses

FIELD ON THE MEDIAN PLANE

Iron Structure

Bottom half of one octant

IRON WITH COILS

HILL DETAILS

AEδALUS

Variable gap: 3cm total at 176; 6cm total at 180cm up to 500cm; 3cm total from 510cm to 520cm

Beam Dynamics: Conformation to Isochronous Field

Last closed orbit at energy >800MeV

Beam Dynamics: Resonance Avoidance

 v_z = 0.5 most dangerous resonance **AVOIDED**

Stripping Extraction

-No need for turn separation -Expect excellent efficiency

Stripping Extraction

Ring Cyclotron Challenges

- Engineering design of magnet sector
 - Cryostat for containing hoop forces
 - Geometric conformation for isochronicity condition
- RF system design and integration
- Vacuum system
 - Achieve adequate vacuum to avoid gas stripping
- Extraction
 - Stripping several turns introduces momentum spread
 - Require ~2% acceptance in extraction channel

RIKEN Superconducting Ring Cyclotron (SRC)

Present Status of Design Efforts

- Beam dynamics work progressing well
 - Calabretta (LNS-Catania), Adelmann (PSI) leading significant modeling efforts
- Engineering studies expected in next months
 SC magnet experts being contacted
- Ion source and Central Region tests
 - BEST collaborations
- Erice Workshop in late November
 - Assessment of viability and mapping of further R&D efforts

Goals

- Determination of feasibility of the technology
 Development of complete straw-man design
- Establishment of base-line cost of the design

Timetable

• Rough cost within one year

Summary

- DAEδALUS experiment addresses interesting and timely questions in neutrino physics
- Accelerators being developed could be a revolutionary new compact, (relatively) inexpensive neutrino source, suitable for many experiments
 - and other ADS (Accelerator-Driven Systems) applications
- Our Collaboration is looking for new members!
 - Contact:
 - Janet Conrad <conrad@mit.edu>
 - Mike Shaevitz <shaevitz@nevis.columbia.edu>

H₂⁺ Vibrational State Mitigation

Diagnostic for optimizing quenching with noble gases $H_2^+(v \ge 3) + He \rightarrow HeH^+ + H$ in source plasma $H_2^+(v \ge 2) + Ne \rightarrow NeH^+ + H.$ Filter Lens H_2^+ after Chupka & Russell MONOCHROMATOR f/1.5 (1968)Ion Source Chopper Wheel Arc Lamp

> Photo-dissociation, after Von Busch & Dunne (1972)

