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DAEδALUS 

Use decay-at-rest neutrino beams, 
and the planned 300 kton H2O detector (Gd doped) 

at the Deep Underground Science & Engineering Laboratory	

to search for CP violation in the neutrino sector	


Decay
At rest

Experiment
for δcp studies

At the
Laboratory for
Underground

Science
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DAEδALUS Concept	

THESIS	

•  A new generation of cyclotron-based neutrino 

sources for decay-at-rest (from pi-mu chain) 
can become valuable research tools	


TECHNOLOGY GOALS	

•  Compact	

•  Cost-effective	

•  Efficient, reliable, economical to operate	
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Collaboration Resources:	

DAEδALUS co-spokespersons:	

•  Janet Conrad, MIT	

•  Mike Shaevitz, Columbia	

Accelerator Team:	

•  Luciano Calabretta, LNS-Catania 	

•  Bill Barletta, MIT	

•  Andreas Adelmann, PSI	

•   Jose Alonso, MIT	

Thx to:	

•   Georgia Karagiorgi, Columbia	
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Outline 
•  Physics basis for DAEδALUS experiment 
•  Description of experiment 
•  Sensitivity studies 
•  Complementarity between DAEδALUS and LBNE 
•  Accelerator requirements/options for DAEδALUS 
•  Accelerator design based on H2

+ 

•  Status and planned work 
•  Summary 
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Neutrino Oscillation and δCP 

Δij = Δmij
2 L/4Eν	
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Homestake	

1300 km	


Fermilab	


LBNE – Long Baseline Neutrino Experiment	

Beam from Fermilab	


Aimed at detectors in South Dakota	
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Decay-At-Rest Source 

•  800 MeV proton beams 
–  Produces pions at  

low velocity 
•  π+  stopped, decay 
‒  (π- absorbed)	


•  π+ à µ+ νµ	


µ+ à e+ νe νµ	


	

•  NO electron anti-neutrinos! 
‒  νe contribution (π - decay) is insignificant: <10-2%	
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DAEδALUS Experiment 

Nominally, ~4x1022 neutrinos/flavor/accelerator/year  

Δij = Δmij
2 L/4Eν	
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DAEδALUS Experiment 

Nominally, ~4x1022 neutrinos/flavor/accelerator/year  

Short baseline minimizes matter effects 

Δij = Δmij
2 L/4Eν	
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Oscillation Signal 
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Sensitivity Comparisons 

Normal 
Hierarchy 

DAEδALUS only – 10 years 
LBNE – 10 years 
LBNE-Proj X – 10 years 
DAEδALUS + LBNE ν only – 10 years concurrent running 
Additional 10 years concurrent ops of DAEδALUS + Proj X 
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Sensitivity Comparisons 

Inverted 
Hierarchy 

DAEδALUS only – 10 years 
LBNE – 10 years 
LBNE-Proj X – 10 years 
DAEδALUS + LBNE ν only – 10 years concurrent running 
Additional 10 years concurrent ops of DAEδALUS + Proj X 
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Sensitivity Comparisons 
DAEδALUS	
 LBNE	


DAEδALUS  10 yrs’ data	
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Synergistic Combination 
DAEδALUS alone                        DAEδALUS + LBNE	

(10 year data collection) 	
 	
(10 yr DAEδALUS + 10 yr LBNE ν only)	




DAEδALUS 

Accelerator Requirements	


Can they be built?	
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Accelerator Requirements	


•  Beam on target:  Protons	

– Most efficient beam for pion production	


•  Beam Energy:  ~ 800 MeV 	

– Produce pions in “delta plateau”	

– Optimize: 	


•  Nuclear mean free path (~ 15 cm)	

•  Energy loss 	

•  Minimize decay in flight (π –  background)	
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Accelerator Requirements	

•  Beam Power:	


–  1.5 km site: 1 MW average	

–  8 km site:    2 MW average	

–  20 km site:  5 MW average	


•  Accelerator Duty Factor:  ~20% 	

–  Instantaneous power is ×5 average power	

–  Can be optimized and time structure fairly arbitrary	


•  High Reliability:  both running & handling	


•  Cost:  As low as possible	
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Our Needs vs. Existing Machines ���
(Average Power Needs)	


•  LAMPF (Linac):  800 MeV, 1 mA (12% DF)	

•  PSI (Cyclotron): 590 MeV, 2.2 mA (100% DF)	

•  SNS (Linac):  1 GeV, 1 mA (6% DF)	


•  DAEδALUS:	

Near ~ 1 mA (20% DF)	

Far ~ 5 mA (20% DF)	
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Our Needs vs. Existing Machines ���
(Peak Power Needs)	


•  LAMPF (Linac):  800 MeV, 8 mA peak	

•  PSI (Cyclotron): 590 MeV, 2.2 mA 	

•  SNS (Linac):  1 GeV, 17 mA peak	


•  DAEδALUS	

Near ~ 5 mA peak	

Far ~ 25 mA peak	
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Issues with High Intensities	

•  Beam Loss	


–  Thermal power damages components	

•  E.g. 0.1% of 1 MW beam (1 kW) will cause problems	


–  Activation causes problems for maintenance	

•  PSI limits uncontrolled loss to 200 watts per cyclotron vault	


•  Space-charge Emittance Growth	

–  Makes controlling beam loss more difficult	

–  Primarily a problem at very low energies	


•  current > few mA,  at energy < 1 MeV 	
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Design Considerations	

•  Low Energies	


–  Very careful accelerator design for minimizing ���
    space-charge blowup	


–  High brightness ion source	

–  Good focusing, high acceleration rates	


•  High Energies	

–  Careful beam handling for clean extraction	

–  Large apertures, minimize chances of beam hitting 

anything	
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•  Linacs	


– Cleanest of technologies	

•  but there are issues of size and cost 	


•  Cyclotrons 	

–  Superconducting (proton) Cyclotron	


•  Extension of PSI	

–  Stacked (proton) Cyclotron	

–  H2

+ Cyclotron  --  reduces many problems related to 
beam loss and extraction compared to other designs	


Technologies explored	
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Cyclotron Experience	

•  PSI is most powerful ���

   in the world	

–  590 MeV protons	

–  2.2 mA	

–  1.3 MW	


Very high	

Injection energy	
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Beam at High Energy End	


•  Turns get closer together 
as radius increases	


–  Must play resonances to get turn 
separation	


–  Septum intercepts beam!	

–  PSI achieves 99.98% extraction 

efficiency!	


Septum	
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Also Must Have Very Large 
RF System	


•  High accelerating voltage 
promotes larger turn 
separation	

‒  ΔE = 2 MeV/turn	

–  500 kV/cavity	
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H2
+ Ring Cyclotron���

Promising Design from 1990’s	

•  Concept proposed by Luciano Calabretta, Catania	


–  Response to C. Rubbia idea for high-power cyclotrons for ADS	

–  Reports in European Particle Accelerator Conference	


Calabretta et al: PAC 99 & EPAC 2000	

•  1 GeV, ~6 mA  	

•  High rigidity for H2

+	


–  Superconducting magnets keep size reasonable	

•  Efficient extraction (via stripping)	


–  Substantially less RF requirements	

	
       no need for clean turn separation 	
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Status of Design	


•  arXiv: 1107:0652 	

Superconducting Ring Cyclotron	

<1 mA> H2+ 800 MeV/n, 1.6 

MW	


Injector Cyclotrons	

< 1 mA> H2+ 50 MeV/n	


S t r i p p e r 
foils	


Extraction N. 1	


Extraction N. 2	
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System Components	

•  Ion Source	


–  High brightness H2
+ options	


•  Multicusp, microwave	

•  Injector Cyclotron	


–  Axial injection	

–  “Classical” extraction at 50 MeV/n	


•  Ring Cyclotron 	

–  Superconducting (Bmax ~ 6T)	

–  Stripping extraction	


•  Target/beam dump	

–  Shaped graphite/copper/water-cooled 	


•  To absorb 5 MW	
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Ion Source Options	


Multicusp – LBNL, Beijing	


Either produces 20-50 mA (CW) H2
+ with good emittance	


VIS – LNS-Catania	
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Ion Source Challenges	

•  Optimizing H2

+ production	

•  Obtaining steady, reliable currents >30 mA	

•  Quenching of high ν (loosely-bound) vibrational 

states	

–  17 bound states	

‒  ν > ~8 (binding energy < ~ 1 eV) may undergo 

Lorentz stripping at high energies	

–  ~ 10% of beam could be in these states	

–  Mixing He, Ne in source plasma expected to 

adequately quench states	

–  Must develop suitable diagnostic tools!	
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Ion Source Challenges	

•  Optimizing H2

+ production	

•  Obtaining steady, reliable currents >30 mA	

•  Quenching of high ν (loosely-bound) vibrational 

states	

–  17 bound states	

‒  ν > ~8 (binding energy < ~ 1 eV) may undergo 

Lorentz stripping at high energies	

–  ~ 10% of beam could be in these states	

–  Mixing He, Ne in source plasma shown to adequately 

quench loosely-bound states	

•  Must develop suitable diagnostic tools!	
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Axial injection channel	


Injector Cyclotron	
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Axial injection channel	


Spiral	

inflector	


Injector Cyclotron	
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Axial injection channel	


Spiral	

inflector	


Injector Cyclotron	


First	

captured	


orbits	
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Injector Cyclotron Challenges	

•  Efficiency of capture	


– Space charge blowup 	

•  low energy	

•  high current	


•  Excessive beam loss	

–  Inject ~20 mA, capture ~3 mA 	


•  this considered “good”!	


•  Emittance growth	

– Problems in latter stages	
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Strategies	


•  Central Region tests	

– Collaborations with BEST Cyclotrons	


Vancouver, BC mfg isotope cyclotrons	
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Superconducting Ring Cyclotron	

Superconducting Ring Cyclotron	


<1 mA> H2+ 800 MeV/n, 1.6 MW	


Injector Cyclotrons	

< 1 mA> H2+ 50 MeV/n	


Stripper foils	


Extraction N. 1	


Extraction N. 2	
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Cyclotron Parameters	

Magnet – 8 sector	


	
14 m steel diameter	

	
4.9 m extraction radius	

	
6.3 T Bmax	


RF – 4 single-gap (PSI style)	

	
> 2 MeV energy gain/turn	


Vacuum – < 10-9 torr	

	
avoid gas-stripping losses	
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FIELD ON THE MEDIAN PLANE	
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Iron Structure	

Bottom half of one octant 

yoke 

pole 

hill 

Central 
pillar 

Bottom cap 
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IRON WITH COILS	


Tilted coils : 
3deg around 
(490; 0; -1.5)cm 

Minimum distance  
iron-coil 7.5cm 

Total radius 688cm 
Semi-height 280cm 

Current density 5200A/cm2 
Area 16x27cm2 
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HILL DETAILS	


Variable gap: 
3cm total at 176; 
6cm total at 180cm up to 500cm; 
3cm total from 510cm to 520cm 

View of the hill from the top 
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Beam Dynamics:  Conformation to 
Isochronous Field	


Last closed orbit at energy >800MeV 
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Beam Dynamics:  Resonance Avoidance	


νz = 0.5 most dangerous resonance AVOIDED 
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Stripping Extraction	


Stripper	


-No need for turn separation	

-Expect excellent efficiency	
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Stripping Extraction	


Stripper  
foil  
(~2 mg/cm2) 

emerging 
protons 

H2
+ beam 

electron 
catcher Stripper	


-No need for turn separation	

-Expect excellent efficiency	
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Ring Cyclotron Challenges	


•  Engineering design of magnet sector	

–  Cryostat for containing hoop forces	

–  Geometric conformation for isochronicity condition	


•  RF system design and integration	

•  Vacuum system	


–  Achieve adequate vacuum to avoid gas stripping	

•  Extraction	


–  Stripping several turns introduces momentum spread	

–  Require ~2% acceptance in extraction channel	
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RIKEN Superconducting Ring Cyclotron (SRC)	

	


14.4 m	


Kb=2600	

Rex=5.36 m	

<B>=3.8 T	


Iron weight	

   8000 tons	
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Present Status of Design Efforts	


•  Beam dynamics work progressing well	

–  Calabretta (LNS-Catania), Adelmann (PSI) leading 

significant modeling efforts	

•  Engineering studies expected in next months	


–  SC magnet experts being contacted	

•  Ion source and Central Region tests	


–  BEST collaborations	

•  Erice Workshop in late November	


–  Assessment of viability and mapping of further R&D 
efforts	
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Goals	


•  Determination of feasibility of the technology	

– Development of complete straw-man design	


•  Establishment of base-line cost of the design	


Timetable	

•  Rough cost within one year	
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Summary	

•  DAEδALUS experiment addresses interesting and 

timely questions in neutrino physics	

•  Accelerators being developed could be a 

revolutionary new compact, (relatively) inexpensive 
neutrino source, suitable for many experiments	

–  and other ADS (Accelerator-Driven Systems) applications	


•  Our Collaboration is looking for new members!	

–  Contact: 	


•  Janet Conrad  <conrad@mit.edu>	

•  Mike Shaevitz <shaevitz@nevis.columbia.edu>	
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Thank You!	
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H2
+ Vibrational State Mitigation	


Photo-dissociation, 	

after Von Busch & Dunne (1972)	


after Chupka & Russell 	

(1968)	


Diagnostic for optimizing	

quenching with noble gases	


in source plasma	



