

Search for new physics with same-sign isolated dilepton events with jets and missing transverse energy at CMS

M. Weinberg University of Wisconsin On behalf of the CMS Collaboration

Outline

- Introduction
- The CMS detector
- Reconstruction of leptons, missing energy and jets
- Baseline event selection
- New physics search regions
- Data-driven background estimation
 - Events with fake leptons
 - Lepton charge misreconstruction
- Systematic uncertainties
- Results and interpretation
- Summary and conclusions

- Isolated same-sign dileptons very clean signature for new physics
 - Standard Model sources extremely small
 - Same-sign leptons occur naturally in many new physics models
 - Supersymmetry, universal extra dimensions, etc.
- Also require missing transverse energy (MET) and hadronic jets
 - High MET justified by astrophysical evidence for dark matter
 - Significant hadronic activity from strong interactions
 - Otherwise, as model-independent as possible
- Data collected by CMS at the LHC in 2011
 - Total integrated luminosity of 0.98 fb⁻¹
 - From pp collisions at CM energy of 7 TeV

- Example SUSY cascade leading to jets, MET and samesign leptons
- Multiple possible mass scales
 - Large difference between squark/gluino mass and chargino mass → large hadronic activity in event
 - Large difference between chargino mass and LSP mass → high-p_T leptons in event

q

 \bar{q}

- Range of scenarios with asymmetry between τ, e/μ production δ_λ g
- Need multiple baseline selections to cover widest possible phase space

The CMS detector

Reconstruction of leptons, missing energy and jets

Electron candidates

- Cluster in ECAL matched to tracker hits
- ID based on shower shape and track-cluster matching
- ID efficiency ~ 80%
- Muon candidates
 - Reconstructed via 2 algorithms
 - Tracker muon: Seeded from tracks, matched to signals in calo and muon systems
 - Global muon: Global simultaneous fit to tracker and muon hits
 - ID efficiency ~ 96%

- Reconstructed based on particle flow (PF) technique
- Jet clustering uses anti-kT algorithm with cone of R = 0.5

Hadronic tau candidates

- Start from jet
- Find decay products in variable-size cone

DPF 2011 10-Aug-11

Baseline selections

- Events to test background predictions
- Initial selection:
 - 2 ss lep: p_T(e, μ, τ) > 10, 5, 15 GeV, |η| < 2.4
 - 2 jets: p_T > 40 GeV, |η| < 2.5
 - ♦ H_T > 80 GeV, MET > 30 GeV
- Baseline selections:
 - Inclusive (ee, eµ, µµ): H_T > 200 GeV
 - High-p_T (ee, eµ, µµ): p_T(*I*₁, *I*₂) > 20, 10 GeV
 - Taus (eτ, μτ, ττ): H_T > 350 GeV, MET > 80 GeV
- Trigger efficiencies from tag and probe method with Z → I+I events
 - Electrons: 98 99% efficiency
 - Efficiency shown for inclusive dielectron selection vs $\ensuremath{p_{T}}$ of subleading electron
 - Muons: 90 96% efficiency
 - Efficiency shown for inclusive dimuonselection vs p_T of subleading muon
 - Taus: ~ 90% efficiency

Search regions

Define 4 search regions:

- 1: H_T > 400 GeV, MET > 120 GeV: Sensitive to CMSSM, low m0 region
- 2: H_T > 200 GeV, MET > 120 GeV: Models with moderate squark-gluino mass splitting
- 3: H_T > 400 GeV, MET > 50 GeV: CMSSM, high m0 region
- 4: H_T > 80 GeV, MET > 100 GeV: pMSSM models with sneutrino LSP
- Events observed in data on H_T-MET plane for baseline selections
 - Most events in data fall outside all four search regions

M. Weinberg University of Wisconsin DPF 2011 10-Aug-11

Background estimation

Prompt same-sign dileptons

- qqbar \rightarrow WZ and ZZ, qq \rightarrow qqW[±]W[±], 2 x (qqbar \rightarrow W), and ttbar + W
- Evaluated from simulation, 10 40% contribution, 50% systematic uncertainty
- Opposite-sign dileptons with charge misreconstruction
 - $Z/\gamma^* \rightarrow I^+I^-$, ttbar
 - Evaluated in data, < 10% contribution, 20% systematic uncertainty
- Fake leptons from jets
 - Leptons from heavy flavor decays and misidentified jets

Fake rates

Ratio of tight to loose electrons (left) and muons (right)

- Isolation requirement loosened for fakeable objects
- Event also contains jet above threshold separated from lepton candidate by ΔR > 1.0
- Fake rate determined for jet p_T > 40 GeV

Electron charge misreconstruction

- Probability to misreconstruct electron charge significantly increased in endcap region
 - Measured from simulated MC events
- Measure charge misreconstruction rate from same-sign ee events with invariant mass in Z window 76 < M_{ee} < 106
 - Predicted MC calculated from Z events and data with charge misreconstruction probability applied
 - Comparison between data and predicted MC for same-sign ee events in Z boson control region
 70 CMS Proliminant/ 5 = 7 Tol/

University of Wisconsin

- Tau charge is sum of charge of hadrons associated with tau decay
- Charge misreco rate measured from invariant mass of µT pairs for opposite sign (left) and same sign (right)
 - Tau charge misreconstruction expected to be ~ order of

magnitude greater than for electrons

10-Aug-11

Background predictions from data

- Data-driven background predictions shown for each baseline selection
 - Two sets of complementary methods used to measure backgrounds for inclusive and high-p_T selections, shown side-by-side
 - Predictions mutually consistent
 - Similar method used for tau backgrounds
- Observed yield in very good agreement with predictions for all baseline regions

Data

ee

bkg prompt-fake

bka SS prompt-prompt

bkg OS prompt-prompt

bkg fake-fake

Inclusive selection

High- p_T selection

CMS preliminary L_{int} =0.98 fb⁻¹, \sqrt{s} = 7 TeV

Tau selection

DPF 2011 10-Aug-11

μμ

eμ

Total

- Observed events and bkgd predictions by baseline selection and search region
 - See no evidence of events in excess bkgd prediction, set 95% CL upper limit on observed ۲ events (use modified frequentist method)

Dilepton category	Inclusive (H _T > 200 GeV)			High-p _T [p _T (<i>I</i> ₁ , <i>I</i> ₂) > 20, 10 GeV]				Taus
H _T (GeV)/MET(GeV)	400/120	400/50	200/120	400/120	400/50	200/120	80/100	400/120
Predicted	2.3 ± 1.2	5.3 ± 2.4	6.6 ± 2.9	1.4 ± 0.7	4.0 ± 1.7	4.5 ± 1.9	10 ± 4	2.9 ± 1.7
Observed	1	7	6	0	5	3	7	3
95% CL UL yield	3.7	8.9	7.3	3.0	7.5	5.2	6.0	5.8

CMS preliminary L_{int} =0.98 fb⁻¹, \sqrt{s} = 7 TeV

- Convey information in modelindependent form
- "Efficiency model" used to test range of new physics
 - Estimate efficiency from simulation
 - Parametrize with error functions
- Efficiencies shown for leptons (top) and H_T and MET (bottom)

DPF 2011 10-Aug-11

- Exclusion limit set using search region 1 of high-pT dilepton selection in constrained MSSM
 - Observed upper limits compared to expected number of events in CMSSM in m₀-m_{1/2} plane_{CMS} Preliminary, L_{int} = 0.98 fb⁻¹, √s = 7 TeV
 - All points with mean expected 0
 values above this 2
 limit are excluded € 600
 at 95% CL
 - Shaded limit indicates production cross section uncertainty
- Result from 2010 also shown for comparison

DPF 2011 10-Aug-11

200

- Searched for new physics in same-sign dilepton channel, including final states with electrons, muons and taus
- All major background sources estimated directly from data
 - Events with single fake lepton dominant background in all channels except тт
 - Two fake т dominates in тт channel
- No evidence for excess over background prediction
 - Set 95% CL upper limits on number of signal events in |η| < 2.4 with 0.98 fb⁻¹ of data
 - Report exclusion limit in CMSSM parameter space

Backup slides

Fake rates for different methods

DPF 2011 10-Aug-11 THE UNIVERSITY

Isolation efficiency

M. Weinberg University of Wisconsin DPF 2011 10-Aug-11

20

THE UNIVERSITY

CMSSM exclusion limits for inclusive search

DPF 2011 10-Aug-11