Physics Cases For Muon Colliders

Tao Han
University of Pittsburgh

APS / DPF 2011
(Brown University, Aug. 11, 2011)
“Who ordered that?” (I. I. Rabi)
The “heavy electron” μ^\pm has helped us a great deal in understanding particle physics.
“Who ordered that?” (I. I. Rabi)
The “heavy electron” μ^\pm has helped us a great deal in understanding particle physics.

Although sharing the same EW interactions, it isn’t another electron:

\[
\begin{align*}
 m_\mu &\approx 207 \; m_e \\
 \tau(\mu \to e\bar{\nu}_e\nu_\mu) &\approx 2.2 \; \mu s \\
 c\tau &\approx 660 \; m.
\end{align*}
\]
“Who ordered that?” (I. I. Rabi)
The “heavy electron” μ^\pm has helped us a great deal in understanding particle physics.

Although sharing the same EW interactions, it isn’t another electron:

$$m_\mu \approx 207 \ m_e$$
$$\tau(\mu \rightarrow e\bar{\nu}_e\nu_\mu) \approx 2.2 \ \mu s$$
$$c\tau \approx 660 \ m.$$

It is these features: heavy mass, short lifetime that dictate the physics.
Advantages of a Muon Collider

(1). Less radiative energy loss

\[\Delta E \sim \gamma^4 = \left(\frac{E}{m_\mu} \right)^4 \]
Advantages of a Muon Collider

(1). Less radiative energy loss

\[\Delta E \sim \gamma^4 = \left(\frac{E}{m_\mu} \right)^4 \]

which allows a higher energy and much smaller machine:*

- **LHC**
 - Protons (P-P)
 - (1.5 TeV)

- **ILC**
 - e^+e^-
 - (0.5 TeV)

- **CLIC**
 - e^+e^-
 - (3 TeV)

- **Mu-Mu**
 - (4 TeV)

*Palmer
Advantages of a Muon Collider

(1). Less radiative energy loss

\[\Delta E \sim \gamma^4 = \left(\frac{E}{m_\mu} \right)^4 \]

which allows a higher energy and much smaller machine:*

\[\text{LHC} \quad PP \quad (1.5 \text{ TeV}) \]

\[\text{ILC} \quad e^+e^- \quad (0.5 \text{ TeV}) \]

\[\text{CLIC} \quad e^+e^- \quad (3 \text{ TeV}) \]

\[\text{FNAL site} \quad \text{Mu-Mu} \quad (4 \text{ TeV}) \]

and a better beam-energy resolution: \(\delta p/p \sim 0.1\% - 0.01\% \).

*Palmer
(1). Less radiative energy loss
\[\Delta E \sim \gamma^4 = \left(\frac{E}{m_\mu} \right)^4 \]
which allows a higher energy and much smaller machine:

\[\begin{array}{c}
LHC \quad \text{P P (1.5 TeV)} \\
\hline
ILC \quad e^+e^- (0.5 \text{ TeV}) \\
\hline
CLIC \quad e^+e^- (3 \text{ TeV}) \\
\hline
\text{FNAL site} \quad \text{Mu-Mu (4 TeV)} \\
\end{array} \]

and a better beam-energy resolution: \[\delta p/p \sim 0.1\% - 0.01\%. \]

(2). Some natural beam-polarization via \[\pi^- \rightarrow \mu^- \bar{\nu}. \]

*Palmer
Advantages of a Muon Collider

(1). Less radiative energy loss

\[\Delta E \sim \gamma^4 = \left(\frac{E}{m_\mu} \right)^4 \]

which allows a higher energy and much smaller machine:*

\[
\begin{align*}
\text{LHC} & \quad \text{P P (1.5 TeV)} \\
\text{ILC} & \quad e^+e^- (0.5 \text{ TeV}) \\
\text{CLIC} & \quad e^+e^- (3\text{ TeV}) \\
\text{Mu-Mu} & \quad (4 \text{ TeV})
\end{align*}
\]

and a better beam-energy resolution: \(\frac{\delta p}{p} \sim 0.1\% - 0.01\% \).

(2). Some natural beam-polarization via \(\pi^- \rightarrow \mu^- \bar{\nu} \).

(3). Challenges: “Never play with an unstable thing!”

(see Ron Lipton’s talk next)

*Palmer
Physics at Muon Colliders
Physics at Muon Colliders

Most unique of all at a muon collider: the s-channel scalar resonance.

†Barger, Berger, Gunion, Han
A Higgs Factory

The s-channel resonant production:

$$
\sigma(\mu^+\mu^- \rightarrow H, A \rightarrow X) = \frac{4\pi\Gamma(H, A \rightarrow \mu^+\mu^-) \Gamma(H, A \rightarrow X)}{(s - M_H^2)^2 + \Gamma_H M_H^2} \epsilon_E \ll \Gamma_H \Rightarrow \frac{4\pi\Gamma(H, A \rightarrow \mu^+\mu^-) \Gamma(H, A \rightarrow X)}{\Gamma_H^2 M_H^2}.
$$

$$
\sigma(s) = \int d\sqrt{s} \sigma(\mu^+\mu^- \rightarrow H, A \rightarrow X) \frac{dL}{d\sqrt{s}}.
$$
A Higgs Factory

The s-channel resonant production:

$$
\sigma(\mu^+\mu^- \to H, A \to X) = \frac{4\pi \Gamma(H, A \to \mu^+\mu^-) \Gamma(H, A \to X)}{(s - M_H^2)^2 + \Gamma_H^2 M_H^2} \left(s - M_H^2 \right)^2 + \Gamma_H^2 M_H^2
$$

$$
\overline{\sigma}(s) = \int d\sqrt{s} \sigma(\mu^+\mu^- \to H, A \to X) \frac{dL}{d\sqrt{s}}
$$

$$
\delta E \ll \Gamma_H \Rightarrow \frac{4\pi \Gamma(H, A \to \mu^+\mu^-) \Gamma(H, A \to X)}{\Gamma_H^2 M_H^2}.
$$

Higgs Total Widths

Effective Cross Sections: $m_h=110$ GeV
Heavy Higgs degenerate as M_A large: $\delta M \approx \frac{M_Z^2}{2M_A} \sin^2 2\beta$.

400 GeV Higgses resolved! 900 GeV Higgses not resolvable.‡

‡Gunion, Han
Heavy Higgs degenerate as M_A large: $\delta M \approx \frac{M_A^2}{2M_A} \sin^2 2\beta$.

400 GeV Higgses resolved! 900 GeV Higgses not resolvable.‡

Even at high mass, there is sufficient info understanding the Higgs sector:

$$\sigma_{\text{measured}}(b\bar{b}, t\bar{t}, \tau\tau) \Rightarrow \frac{4\pi \Gamma(H, A \rightarrow \mu^+\mu^-) \Gamma(H, A \rightarrow X)}{\Gamma_{\text{tot}}^2 M_H^2}.$$

‡Gunion, Han
Heavy Higgs degenerate as M_A large: $\delta M \approx \frac{M_Z^2}{2M_A} \sin^2 2\beta$.

Even at high mass, there is sufficient info understanding the Higgs sector:

$$\sigma^{\text{measured}}(b\bar{b}, t\bar{t}, \tau\tau) \Rightarrow \frac{4\pi \Gamma(H, A \rightarrow \mu^+\mu^-) \Gamma(H, A \rightarrow X)}{\Gamma_{\text{tot}}^2 M_H^2}.$$

- M_H: peak, accurate!
- Γ_{tot}: profile, accurate by scanning!
- σ^{measured}: $(b\bar{b})/(t\bar{t}) \approx (m_b^2/m_t^2) \tan^4 \beta$, $(b\bar{b})/(\tau\tau) \approx 3m_b^2/m_\tau^2$ upto radiative corrections.
- $\sigma^{\text{tot}} = (b\bar{b}) + (t\bar{t}) + \text{(smaller ones)} \Rightarrow \Gamma(\mu^+\mu^-)$ upto missing channels.

‡Gunion, Han
Heavy Higgs degenerate as M_A large: $\delta M \approx \frac{M_Z^2}{2M_A} \sin^2 2\beta$.

Even at high mass, there is sufficient info understanding the Higgs sector:

$$\frac{\sigma_{\text{measured}}(b\bar{b}, t\bar{t}, \tau\tau)}{\Gamma(H, A \rightarrow \mu^+\mu^-)} \Rightarrow \frac{4\pi\Gamma(H, A \rightarrow \mu^+\mu^-) \Gamma(H, A \rightarrow X)}{\Gamma_{\text{tot}}^2 M_H^2}.$$

- M_H: peak, accurate!
- Γ_{tot}: profile, accurate by scanning!
- σ_{measured}: $(b\bar{b})/(t\bar{t}) \approx (m_b^2/m_t^2)\tan^4 \beta$, $(b\bar{b})/(\tau\tau) \approx 3m_b^2/m_\tau^2$ upto radiative corrections.
- $\sigma_{\text{tot}} = (b\bar{b}) + (t\bar{t}) + ($smaller ones$) \Rightarrow \Gamma(\mu^+\mu^-)$ upto missing channels.
- Compare with theory: $\Gamma(H, A \rightarrow \mu^+\mu^-)$, learn how many H, A's contributing.
- If $t\bar{t}, \tau\tau$ decay kinematics reconstructed, hope to see CP violation!

‡Gunion, Han
Or any resonance R, that couples to a muon

$$\sigma(\mu^+\mu^- \to R \to X) \approx \frac{4(2J + 1)\pi \Gamma(R \to \text{initial}) \Gamma(R \to X)}{\Gamma^2 M^2}.$$
A Z' Factory

Or any resonance R, that couples to a muon

$$\sigma(\mu^+\mu^- \rightarrow R \rightarrow X) \approx \frac{4(2J + 1)\pi \Gamma(R \rightarrow \text{initial}) \Gamma(R \rightarrow X)}{\Gamma^2 M^2}.$$

for various couplings and spins (1, 2).

Comment: The LHC will have the full coverage upto $M_{Z'} \sim 4 - 6$ TeV, which will soon motivate/define the machine needs (or otherwise).

Hewett, Rizzo
(1). At LHC, h_{SM} fully covered, but H, A, H^\pm may not.

At $\sqrt{s} = 14$ GeV, still a large hole, especially $M_{H,A} > 500$ GeV.

Significance contours for SUSY Higgses

Regions of the MSSM parameter space ($m_A, \tan\beta$) explorable through various SUSY Higgs channels

- 5 σ significance contours
- two-loop / RGE-improved radiative corrections
- $m_{\text{top}} = 175$ GeV, $m_{\text{SUSY}} = 1$ TeV, no stop mixing

$\Delta M_{\tau\tau}$

$\tan\beta$

m_A (GeV)

CMS, $3 \cdot 10^4$ pb$^{-1}$

$H^\pm \to \tau\nu$

10^4 pb$^{-1}$

$A, H, h \to \tau\tau \to e + \mu + X$

$A, H \to \tau\tau \to \ell^\pm + \tau \text{jet + } X$

$A, H \to \tau\tau \to h^+ + h^- + X$

$A, H \to \tau\tau \to h^+ + h^- + X$

$\tau\tau$

$\gamma\gamma$

LEP II $\sqrt{s} = 200$ GeV

Denegri
(2). At LHC, heavy EW pairs are difficult to search for
\[\mu^+ \mu^- \rightarrow H_1 H_2, \tilde{H}^+ \tilde{H}^-, \tilde{H}^0 \tilde{H}^0, \tilde{\ell} \tilde{\ell}. \]

IF no help from colored states \[\tilde{g} \rightarrow q\bar{q} \rightarrow qq' \tilde{\chi}^0,\pm \ldots \]
(2). At LHC, heavy EW pairs are difficult to search for
\[\mu^+ \mu^- \rightarrow H_1 H_2, \quad \tilde{H}^+ \tilde{H}^-, \quad \tilde{H}^0 \tilde{H}^0, \quad \ell \bar{\ell}. \]

IF no help from colored states \(\tilde{g} \rightarrow q \bar{q} \rightarrow q q' \tilde{\chi}^0, \pm \ldots \)

At lepton colliders, pair production rather robust:
(2). At LHC, heavy EW pairs are difficult to search for
\[\mu^+\mu^- \rightarrow H_1H_2, \quad \tilde{H}^+\tilde{H}^-, \quad \tilde{H}^0\tilde{H}^0, \quad \ell\ell. \]

\textbf{IF} no help from colored states \[\tilde{g} \rightarrow q\bar{q} \rightarrow qq' \tilde{\chi}^0,\pm \ldots \]

\textbf{At lepton colliders, pair production rather robust:}

Once crossing the pair threshold, observation straightforward.
(rather model-independent, like in Two-Higgs Doublet model etc.)
(3). Dark Matter connection:
(3). Dark Matter connection:

Energy edges in chain decays:

$$\mu^+ \mu^- \rightarrow \tilde{\mu}^+ \tilde{\mu}^- \rightarrow \mu^+ \mu^- + E_{\text{miss}} (\tilde{\chi}_0 \tilde{\chi}_0)$$

$$E_{\text{max, min}} = \frac{\sqrt{s}}{4} (1 - \frac{M^2_{\tilde{\chi}_0}}{M^2_{\tilde{\mu}}}) (1 \pm \beta), \quad \beta = (1 - \frac{4M^2_{\tilde{\mu}}}{s})^{1/2}.$$
(3). Dark Matter connection:

Energy edges in chain decays:

\[\mu^+ \mu^- \rightarrow \tilde{\mu}^+ \tilde{\mu}^- \rightarrow \mu^+ \mu^- + E_{\text{miss}}(\tilde{\chi}_0 \tilde{\chi}_0) \]

\[E_{\text{max, min}} = \frac{\sqrt{s}}{4}(1 - \frac{M_{\tilde{\mu}}^2}{M_{\mu}^2})(1 \pm \beta), \quad \beta = (1 - \frac{4M_{\tilde{\mu}}^2}{s})^{1/2}. \]

Comment: very difficult at LHC due to under-constrained kinematics.

\[\text{Data, Kong, Matchev} \]
Strong Electroweak Dynamics

$W_L W_L$ scattering

The scattering amplitude behaves as

$$A \sim \begin{cases}
 m_H^2/v^2 & \text{if light Higgs,} \\
 s_{WW}/v^2 & \text{if no light Higgs.}
\end{cases}$$

Partial wave unitarity implies: m_H or $\sqrt{s_{WW}} \leq 1.2$ TeV.

$$\Rightarrow \sqrt{s_{\mu\mu}} \sim (4)\sqrt{s_{WW}} \geq 4 \text{ TeV.}$$
The scattering amplitude behaves as

\[A \sim \begin{cases}
 m_H^2/v^2 & \text{if light Higgs}, \\
 s_{WW}/v^2 & \text{if no light Higgs}.
\end{cases} \]

Partial wave unitarity implies: \(m_H \) or \(\sqrt{s_{WW}} \leq 1.2 \) TeV.

\[\Rightarrow \sqrt{s_{\mu\mu}} \sim (4)\sqrt{s_{WW}} \gtrsim 4 \text{ TeV}. \]

For model connections:

\[\frac{\sigma(W_L^+W_L^- \rightarrow W_L^+W_L^-)}{\sigma(W_L^+W_L^- \rightarrow Z_LZ_L)} \sim 2 \quad \text{scalar } H^0, \]

\[\gg 1 \quad \text{vector } \rho_0^{TC}, \]

\[\sim 2/3 \quad \text{LET } \sqrt{s} \ll M. \]
Consider $\mu^+\mu^- \rightarrow \nu \nu W^+ W^-$, $\nu \nu ZZ$ and $\nu \nu t \bar{t}$ via H, V or non-resonance at $\sqrt{s} = 4$ TeV.

Comment: This would be very challenging to test at the LHC.**

**Bagger et al.
Benchmark Processes

Recent meeting at Telluride, CO, *Muon Collider 2011*:
http://conferences.fnal.gov/muon11
Benchmark Processes

Recent meeting at Telluride, CO, *Muon Collider 2011*: http://conferences.fnal.gov/muon11

(1) Higgs, scalar resonances
Benchmark Processes

Recent meeting at Telluride, CO, *Muon Collider 2011*: http://conferences.fnal.gov/muon11

(1) Higgs, scalar resonances

(2) Z' or alike
Benchmark Processes

Recent meeting at Telluride, CO, *Muon Collider 2011*: http://conferences.fnal.gov/muon11

1. Higgs, scalar resonances
2. Z' or alike
3. Pair production for SUSY and BSM
Benchmark Processes

Recent meeting at Telluride, CO, *Muon Collider 2011*:
http://conferences.fnal.gov/muon11

(1) Higgs, scalar resonances

(2) Z' or alike

(3) Pair production for SUSY and BSM

(4) Missing energy, DM connection
Benchmark Processes

Recent meeting at Telluride, CO, Muon Collider 2011:
http://conferences.fnal.gov/muon11

(1) Higgs, scalar resonances

(2) Z' or alike

(3) Pair production for SUSY and BSM

(4) Missing energy, DM connection

(5) WW fusion, strong EW sector
Benchmark Processes

Recent meeting at Telluride, CO, *Muon Collider 2011*:
http://conferences.fnal.gov/muon11

(1) Higgs, scalar resonances

(2) Z' or alike

(3) Pair production for SUSY and BSM

(4) Missing energy, DM connection

(5) WW fusion, strong EW sector

(6) Contact interactions
Comparative Remarks:

Representative Physics Reach:

<table>
<thead>
<tr>
<th></th>
<th>Higgs(es)</th>
<th>SUSY</th>
<th>Strong Dynamics</th>
<th>Exotics</th>
<th>Astro/Cosmo</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s)LHC E_{qq} $\approx 1.5 - 3$ TeV 300 fb$^{-1}$</td>
<td>$\sqrt{\text{partial}}$</td>
<td>$\sqrt{\text{partial}}$</td>
<td>$\sqrt\times$ non-resonance?</td>
<td>$\sqrt\sqrt{\Delta L}$</td>
<td>$\sqrt\times$ missing mass? CP-V ?</td>
</tr>
<tr>
<td>CLIC $(1 - 2) \times 10^{34}$</td>
<td>$\sqrt\sqrt{H \text{ potential}}$</td>
<td>$\sqrt{\text{e flavor}}$</td>
<td>$\sqrt{\text{e flavor}}$</td>
<td>$\sqrt{\text{CP-V}}$</td>
<td></td>
</tr>
<tr>
<td>μ-Collider</td>
<td>$\sqrt\sqrt\sqrt{H \text{ resonances CP-V}}$</td>
<td>$\sqrt{\mu \text{ flavor}}$</td>
<td>$\sqrt{\mu \text{ flavor}}$</td>
<td>$\sqrt{\text{CP-V}}$</td>
<td></td>
</tr>
</tbody>
</table>
Comparative Remarks:

Representative Physics Reach:

<table>
<thead>
<tr>
<th></th>
<th>Higgs(es)</th>
<th>SUSY</th>
<th>Strong Dynamics</th>
<th>Exotics</th>
<th>Astro/Cosmo</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s)LHC (E_{qq} \approx 1.5 - 3) TeV 300 fb(^{-1})</td>
<td>√ partial</td>
<td>√ partial</td>
<td>(\sqrt{\times}) non-resonance?</td>
<td>√√</td>
<td>(\sqrt{\times}) missing mass? CP-V ?</td>
</tr>
<tr>
<td>CLIC ((1 - 2) \times 10^{34}) (H) potential</td>
<td>√√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td></td>
</tr>
<tr>
<td>(\mu)-Collider (H) resonances CP-V</td>
<td>√√√</td>
<td>√</td>
<td>√</td>
<td>√</td>
<td>CP-V</td>
</tr>
</tbody>
</table>

The main difference between (s)LHC and lepton colliders:

1. LHC: more channels accessible (energy threshold, color, spin).
2. LHC: much larger SM backgrounds.
3. LHC: less constrained kinematics.
Comparative Remarks:

Representative Physics Reach:

| (s)LHC \[E_{qq} \approx 1.5 – 3 \text{ TeV} \]
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>300 fb(^{-1})</td>
</tr>
<tr>
<td>Higgs(es)</td>
</tr>
<tr>
<td>partial</td>
</tr>
<tr>
<td>√</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLIC [(1 – 2) \times 10^{34}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ-Collider</td>
</tr>
<tr>
<td>H potential</td>
</tr>
<tr>
<td>H resonances CP-V</td>
</tr>
<tr>
<td>√√</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>μ-Collider</th>
</tr>
</thead>
<tbody>
<tr>
<td>H potential</td>
</tr>
<tr>
<td>H resonances CP-V</td>
</tr>
<tr>
<td>√√√</td>
</tr>
</tbody>
</table>

The main difference between (s)LHC and lepton colliders:

1. LHC: more channels accessible (energy threshold, color, spin).
2. LHC: much larger SM backgrounds.
3. LHC: less constrained kinematics.

The main difference between CLIC and μC:

1. Muon collider: \(s \)-channel scalar resonances, Higgs or alike.
2. Flavor dependent physics \(e \) versus \(μ \).
3. Muon collider: large decay background.
Comparative Remarks:

Representative Physics Reach:

<table>
<thead>
<tr>
<th>(s)LHC</th>
<th>Higgs(es)</th>
<th>SUSY</th>
<th>Strong Dynamics</th>
<th>Exotics</th>
<th>Astro/Cosmo</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{qq} \approx 1.5 - 3$ TeV</td>
<td>√ partial</td>
<td>√ partial</td>
<td>√×</non-resonance?</td>
<td>√√</td>
<td>√× missing mass?</td>
</tr>
<tr>
<td>300 fb$^{-1}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CP-V ?</td>
</tr>
</tbody>
</table>

CLIC	H potential				
(1 – 2) $\times 10^{34}$	√√	√	√	√	CP-V
$μ$-Collider	H resonances				
CP-V	√√√	√	√	√	CP-V
CP-V					

The main difference between (s)LHC and lepton colliders:

1. LHC: more channels accessible (energy threshold, color, spin).
2. LHC: much larger SM backgrounds.
3. LHC: less constrained kinematics.

The main difference between CLIC and $μ$C:

1. Muon collider: s-channel scalar resonances, Higgs or alike.
2. Flavor dependent physics e versus $μ$.
3. Muon collider: large decay background.

Need to take advantage of the complementarity!