Measurement of the proton's weak charge at the Qweak experiment

Jean-Francois Rajotte MIT (for the Qweak collaboration)

DPF meeting August 12th, 2011

Massachusetts Institute of Technology

DOE, NSF, NSERC

Overview

- Qweak the value
- Qweak the experiment
- Run I winter 2011
- Perspective for Run II 2011-2012

Qweak, the value

	Q^{γ}	Q^Z	
u	+2/3	$1 - \frac{8}{3}\sin^2\theta_w$	
d	-1/3	$-1+\frac{4}{3}\sin^2\theta_w$	
p(uud)	+1	$1-4\sin^2\theta_w$	$\leftarrow \qquad \qquad$
n(udd)	0	-	Smallness increases sensitivity to BSM physics

Running of $\sin^2 \theta_w$

Accessing Qweak through PVES

Accessing Qweak through PVES

Accessing Qweak through PVES

Physics beyond the standard model

Examples

- Extra neutral gauge bosons (e.g. SUSY)
- Leptoquarks
- Composite fermions
- etc.

Model independent

$$\frac{\Lambda}{g} = \frac{1}{\sqrt{\sqrt{2}G_F}} \cdot \frac{1}{\sqrt{\Delta Q_w(p)}}$$

4% measurement of Qweak probes 2-3 TeV scale

Physics beyond the standard model

Complementarity of p and e weak charge experiments

The proton's structure

The proton's structure

 $A = A_0 \left[Q_{weak}^p Q^2 + B(Q^2) Q^4 \right]$

the smaller the Q2, the less we are affected by hadronic structure.

Using previous PVES to extrapolate $q^2 \rightarrow 0$

A precise measurement at low Q2, combined with previous PVES, leads to a precise determination of Qweak.

Qweak the experiment

Error budget

Source of	Contribution to	Contribution to
error	$\Delta A_{phys}/A_{phys}$	$\Delta Q_w^p / Q_W^p$
Counting Statistics (10	6 days) 2.1%	3.2%
Hadronic structure		1.9%
Beam polarimetry	1.0%	1.5%
Absolute Q^2	0.5%	1.0%
Backgrounds	0.5%	0.7%
Helicity-correlated		
beam properties	0.5%	0.7%
TOTAL:	2.5%	4.1%

Qweak the experiment

- Electron beam
- Target
- Detector system

Qweak the experiment

- Electron beam
- Target
- Detector system

Electron beam: JLab

Electron beam: JLab

Spin flip @ 960Hz

Qweak the experiment

- Electron beam
- Target
- Detector system

Qweak the experiment

- Electron beam
- Target
- Detector system

Target

Monitoring: target dedicated shift

Qweak the experiment

- Electron beam
- Target
- Detector system

Qweak the experiment

- Electron beam
- Target
- Detector system

Schematic of the Qweak Experiment

Realistic representation

The actual setup

Further considerations

Polarimetry

Precision needed: 1%

Tracking

Drift chambers before and after magnetic deflection (lower current)

$$Background$$

$$A_{meas} = P_e (1 - f) A_{phys} (Q^2) + f A_{bkg} + A_{false}$$
Dilution: $f = \frac{Y_{bkg}}{Y_{phys} + Y_{bkg}}$

- Aluminum window background: determined with (empty) Al target (~10% correction)
- False Asymmetry: Need to minimize beam correlated beam property (beam properties monitored constantly).

Results

Status and projection

- ~500 Coulombs until now
- 180 uA tested: OK
- Polarization > 85%
- Asym. width ~ 236ppm (expected 233ppm)
- Already better than 5% in statistical precision

ΔA/A Projections (assumes 235 ppm MD, 87% pol)

Conclusion

- Qweak is well under way and no show stopper to achieve a ~4% precision.
- Search for parity-violating BSM physics up to the ~2TeV scale.
- Data taking will resume this Fall until May 2012
- Lots of work to be done to achieve our goal (all members are very busy)
- Ancillary measurement
 - Aluminum asymmetry
 - Transverse polarization asymmetry
 - N->Delta

A. Almasalha, D. Androic, D.S. Armstrong, A. Asaturyan, T. Averett, J. Balewski, R. Beminiwattha, J. Benesch, F. Benmokhtar, J. Birchall, R.D. Carlini1 (Principal Investigator), G. Cates, J.C. Cornejo, S. Covrig, M. Dalton, C. A. Davis, W. Deconinck, J. Diefenbach, K. Dow, J. Dowd, J. Dunne, D. Dutta, R. Ent, J. Erler, W. Falk, J.M. Finn1*, T.A. Forest, M. Furic, D. Gaskell, M. Gericke, J. Grames, K. Grimm, D. Higinbotham, M. Holtrop, J.R. Hoskins, E. Ihloff, K. Johnston, D. Jones, M. Jones, R. Jones, K. Joo, E. Kargiantoulakis, J. Kelsey, C. Keppel, M. Kohl, P. King, E. Korkmaz, S. Kowalski1, J. Leacock, J.P. Leckey, A. Lee, J.H. Lee, L. Lee, N. Luwani, S. MacEwan, D. Mack, J. Magee, R. Mahurin, J. Mammei, J. Martin, M. McHugh, D. Meekins, J. Mei, R. Michaels, A. Micherdzinska, A. Mkrtchyan, H. Mkrtchyan, N. Morgan, K.E. Myers, A. Narayan, Nuruzzaman, A.K. Opper, S.A. Page1, J. Pan, K. Paschke, S.K. Phillips, M. Pitt, B.M. Poelker, J.F. Rajotte, W.D. Ramsay, M. Ramsey-Musolf, J. Roche, B. Sawatzky, T. Seva, R. Silwal, N. Simicevic, G. Smith2, T. Smith, P. Solvignon, P. Souder, D. Spayde, A. Subedi, R. Subedi, R. Suleiman, E. Tsentalovich, V. Tvaskis, W.T.H. van Oers, B. Waidyawansa, P. Wang, S. Wells, S.A. Wood, S. Yang, R.D. Young, S. Zhamkochyan, D. Zou

1Spokespersons *deceased 2Project Manager

Preradiator: Increases the signal and reduces the background.

More target

More electron beam

Spin flip @ 960Hz

More electron beam

Spin flip @ 960Hz

More electron beam

Spin flip @ 960Hz

Beam quality

MD 2 YIELD [mV/uA]

33.18

33.16

41.5

41.45

- Helicity correlated beam properties are constantly monitored.
- Linear regression corrects the asymmetry for HC beam properties.
- Slow helicity reversal (HWP and Wien)

Constraints on light quarks weak charges

