

Charmless Hadronic B Decays with BaBar

Brian Lindquist

SLAC

On Behalf of the BaBar Collaboration

DPF 2011

Charmless B Decays

• Many such decays are dominated by $b \rightarrow s$ penguins

- Tree amplitudes subdominant in SM
- New Physics can appear in loops affecting:
 - CP-violating asymmetries (A_{CP}) in decays
 - Altered polarizations in $B \rightarrow VV$ decays (angular analysis)
 - Altered branching fractions

The BaBar Experiment

- PEP-II asymmetric e⁺e⁻ collider at SLAC
- 9.0 GeV e⁻ on 3.1 GeV e⁺
- Operating at Upsilon(4S) resonance

- BaBar took data from 1999-2008
- Analyses based on final dataset:
 - \sim 470M BB pairs

Common Analysis Techniques

Suppress dominant "continuum" background: e⁺e⁻→qq (q=u,d,s,c)

- BB backgrounds: generally small, but some can look similar to signal dangerous!
- Measurements extracted using multivariate maximum-likelihood (ML) fits

$B^+ \rightarrow \rho^0 K^{*+}$ and $B^+ \rightarrow f_0 K^{*+}$: Motivation

- Measure BF, A_{CP}, polarization
- $B^+ \rightarrow \rho^0 K^{*+}$ not yet observed
- B⁺→ρ⁰K^{*+} is VV decay, angular distribution given by

$$\frac{1-f_L}{4}\sin^2\theta_{K^*}\sin^2\theta_{\rho} + f_L\cos^2\theta_{K^*}\cos^2\theta_{\rho}$$

- f_L: longitudinal polarization fraction
- Naïve factorization:
 - $f_{\rm L} = (1 m_{\rm V}^2 / m_{\rm B}^2) \sim 0.9$
 - Works for $B \rightarrow \rho \rho$, not for other $B \rightarrow VV$ decays
 - "polarization puzzle" recent work in QCDF to resolve issue

Brian Lindquist

Charmless Hadronic B Decays with BaBar

$B^+ \rightarrow \rho^0 K^{*+}$ and $B^+ \rightarrow f_0 K^{*+}$: Analysis

PRD 83 051101 (2011)

- Reconstruct $\rho/f_0 \rightarrow \pi^+\pi^-$, $K^{*+} \rightarrow K_S \pi^+$ and $K^+ \pi^0$
- ML fit to 7 variables: m_{FS} , ۲ ΔE , NN, invariant masses, and $cos(\theta)$
- Background: continuum + 9 BB categories.
- Fit simultaneously for BF's, ۲ A_{CP} 's, and f_{I}

$$A_{CP} = \frac{N^- - N^+}{N^- + N^+}$$

Brian Lindquist

Charmless Hadronic B Decays with BaBar

0.05

0.95

0.1

$B^+ \rightarrow \rho^0 K^{*+}$ and $B^+ \rightarrow f_0 K^{*+}$: Results

$\underline{\mathsf{B}}^{+} \rightarrow \rho^{0} \mathsf{K}^{*+}:$

- N(Sig) = 85 ± 24 (K_S π^+), 67 ± 31 (K⁺ π^0)
- BF = $(4.6 \pm 1.0 \pm 0.4) \times 10^{-6}$ consistent with prediction - 5.3 σ significance (incl. syst.) – first observation
- $A_{CP} = 0.31 \pm 0.13 \pm 0.03$
- $f_L = 0.78 \pm 0.12 \pm 0.03$ larger than other ρK^* modes

$\underline{\mathsf{B}}^{+} \rightarrow \underline{\mathsf{f}}_{0} \underline{\mathsf{K}}^{*+}:$

- $N(Sig) = 69 \pm 14 (K_S \pi^+)$, $91 \pm 20 (K^+ \pi^0)$
- BF x BF($f_0 \rightarrow \pi^+ \pi^-$) = (4.2 ± 0.6 ± 0.3)x10⁻⁶
- $A_{CP} = -0.15 \pm 0.12 \pm 0.03$

$B^0 \rightarrow (\rho^0/f_0)K^{*0} \text{ and } B^0 \rightarrow \rho^-K^{*+}$

- Reconstruct $\rho/f_0 \rightarrow \pi\pi$, K^{*0} \rightarrow K⁺ π^- , K^{*+} \rightarrow K⁺ π^0
- ML fit to 7 variables: m_{ES}, ΔE, Fisher, invariant masses, and cos(θ)
- $f_2(1270)K^{*0}$ events extrapolated from $m_{\pi\pi}$ sideband
- Also measure scalar and tensor K* states in a "high-mass" region (not in this talk)

$\mathcal{B}(B^0 \to \rho^- K^{*+}) = (10.3 \pm 2.3 \pm 1.3) \times 10^{-6}$ $f_L(\rho^- K^{*+}) = 0.38 \pm 0.13 \pm 0.03$

and $B^0 \rightarrow f_0 K^{*0}$!

 $\mathcal{A}_{ch}(\rho^- K^{*+}) = +0.21 \pm 0.15 \pm 0.02$

First 5 σ observations of $B^0 \rightarrow \rho^- K^{*+}$

$$\begin{aligned} \mathcal{B}(B^0 \to \rho^0 K^{*0}) &= (5.1 \pm 0.6^{+0.6}_{-0.8}) \times 10^{-6} \\ f_L(\rho^0 K^{*0}) &= 0.40 \pm 0.08 \pm 0.11 \\ \mathcal{A}_{ch}(\rho^0 K^{*0}) &= -0.06 \pm 0.09 \pm 0.02 \end{aligned}$$

$$\begin{aligned} \mathcal{B}(B^0 \to f_0 K^{*0}) \times \mathcal{B}(f_0 \to \pi \pi) \\ &= (5.7 \pm 0.6 \pm 0.3) \times 10^{-6} \\ \mathcal{A}_{ch}(f_0 K^{*0}) = +0.07 \pm 0.10 \pm 0.02 \;. \end{aligned}$$

- **Experiment:** $f_L(\rho^- K^{*+}) \lesssim f_L(\rho^0 K^{*0}) \lesssim f_L(\rho^+ K^{*0}) < f_L(\rho^0 K^{*+})$
- $f_L(\rho^0 K^{*0}) < f_L(\rho^+ K^{*0}) < f_L(\rho^- K^{*+}) < f_L(\rho^0 K^{*+})$ QCDF:

More precision needed to really test Exp/Theory

Brian Lindquist

Charmless Hadronic B Decays with BaBar

New for DPF!

$B^{0} \rightarrow (\rho^{0}/f_{0})K^{*0}$ and $B^{0} \rightarrow \rho^{-}K^{*+}$: Results Preliminary Result

B→\$\$\$\$\$\$\$\$**Motivation**

• $B \rightarrow \phi \phi K$ and $B \rightarrow \eta_c (\rightarrow \phi \phi) K$ can interfere at $m_{\phi \phi} \sim m(\eta_c)$:

- In SM, tree and penguin carry (approx.) the same weak phase
 - No significant CP-violation in SM
- New physics in loop of penguin diagram could have different CPviolating phase
 - Large direct CP-violation possible!
 - (Hazumi, Phys. Lett. B 583, 285 (2004)).

Brian Lindquist

Charmless Hadronic B Decays with BaBar

B→\$\$\$\$\$\$\$**Backgrounds**\$\$\$

- PRD 84, 012001 (2011)
- Peaking backgrounds from $B \rightarrow \phi KKK$, $f_0 KKK$, and 5K
- Measured in sidebands in $m_{\phi 1}$ - $m_{\phi 2}$ plane.
- Extrapolated into signal region based on MC $m_{\phi 1}$ - $m_{\phi 2}$ distributions

B→¢¢K: Results

- ML fit in m_{ES} , ΔE , Fisher, $m_{\phi 1}$, $m_{\phi 2}$
- For m_{₀₀}<2.85 GeV:
 - BF(B⁺ $\rightarrow \phi \phi K^{+}$)=(5.6±0.5±0.3)x10⁻⁶
 - − BF(B⁰→ $\phi\phi$ K⁰)=(4.5±0.8±0.3)x10⁻⁶
 - − $A_{CP}(B^+ \rightarrow \phi \phi K^+) = -0.10 \pm 0.08 \pm 0.02$
- ML fit in bins of $m_{\phi\phi}$

PRD 84, 012001 (2011)

Brian Lindquist

Charmless Hadronic B Decays with BaBar

m₆₀ (GeV)

B⁰→**K**⁺ π ⁻ π ⁰: Motivation

B⁰→**K**⁺ π ⁻ π ⁰: Analysis

- Large backgrounds: continuum + 19 BB background categories
- ~10% of signal events misreconstructed explicitly modeled in fit
- Amplitude model with interference:

Brian Lindquist

Charmless Hadronic B Decays with BaBar

B⁰ \rightarrow **K**⁺ π ⁻ π ⁰: **Results**

PRD 83, 112010 (2011)

- $BF(B^0 \rightarrow K^+ \pi^- \pi^0) = (38.5 \pm 1.0 \pm 3.9) \times 10^{-6}$
- $A_{CP}(K^{*+}\pi^{-}) = -0.29 \pm 0.11 \pm 0.02$
- When combined with $B^0 \rightarrow K_S \pi^+ \pi^-$:
 - $A_{CP}(K^{*+}\pi^{-}) = -0.24 \pm 0.07 \pm 0.02$
 - 3.1 σ evidence of direct CP-violation

B⁺ \rightarrow **K**⁺ $\pi^{0}\pi^{0}$: Introduction

- $B^+ \rightarrow K^{*+} \pi^0$ can provide another piece to $K^* \pi$ set of measurements
- Is $A_{CP}(B^+ \rightarrow K^{*+}\pi^0) = A_{CP}(B^0 \rightarrow K^{*+}\pi^-)$?
- World's first inclusive $B^+ \rightarrow K^+ \pi^0 \pi^0$ measurement:

$$-$$
 BF = (16.2 ± 1.2 ± 1.5) x 10⁻⁶

$$-A_{\rm CP} = -0.06 \pm 0.06 \pm 0.04$$

- Two π⁰'s lead to large fraction of misreconstructed events – full Dalitz plot amplitude analysis difficult
- Measure resonances in a two-body fashion

Preliminary Result

B⁺ \rightarrow **K**⁺ $\pi^{0}\pi^{0}$: **Resonances**

• Measure $K^{*+}\pi^0$, f_0K^+ , and $\chi_{c0}K^+$

• Contributions from nonresonant $K^+\pi^0\pi^0$ and other resonances extrapolated from $m_{\pi\pi}$ and $m_{K\pi}$ sidebands

	BF	A_{CP}
$B^+ \to K^{*+} \pi^0$	$(8.2 \pm 1.5 \pm 1.1) \times 10^{-6}$	$-0.06 \pm 0.24 \pm 0.04$
$B^+ \rightarrow f_0(\rightarrow \pi^0 \pi^0) K^+$	$(2.79 \pm 0.57 \pm 0.51) \times 10^{-6}$	$0.18 \pm 0.18 \pm 0.04$
$B^+ \to \chi_{c0} K^+$	$(182 \pm 78 \pm 32) imes 10^{-6}$	$-0.96 \pm 0.37 \pm 0.04$

Summary

- Charmless hadronic B decays provide a wealth of measurements (A_{CP}, polarization, etc.) that are probes of new physics
- We measure:
 - Polarization f_ in $\rho^0 K^{**}$, $\rho^- K^{**}$, and $\rho^0 K^{*0}$
 - A_{CP} = -0.09±0.10±0.02 in η_c region of $\phi\phi K^+$
 - 3.1 σ evidence for direct CP-violation in B⁰ \rightarrow K^{*+} π ⁻
 - BF's and A_{CP} 's for resonances in B⁺ \rightarrow K⁺ $\pi^{0}\pi^{0}$
- No clear evidence for new physics, but "polarization puzzle" and "K π " puzzle need better understanding
- Many measurements remain statistically limited
- The future lies with LHCb, Belle-II, and SuperB!
 - Belle II/Super B expect ~100x statistics of present B factories