Recent Results in Semileptonic *B* Decays with **B**A**B**A**R**

Brian Hamilton University of Maryland for the *BABAR* Collaboration

2011 Meeting of the Division of Particles and Fields of the American Physical Society

August 9-13, 2011

Outline

- Brief introduction to the **BABAR** experiment
- $\overline{B} \rightarrow D^{(*)} \tau^- v_{\tau}$ measurements
 - Event Reconstruction
 - Fit Structure
 - Results
- B_s production near the $\Upsilon(5S)$ and $\mathcal{B}(B_s \rightarrow l\nu X)$
 - Technique
 - Results
- Latest $|V_{ub}|$ results (time permitting)

BABAR at SLAC's PEP-II e⁺e⁻ collider PEP II **5-layer Silicon** Low Energy Ring (LER) Vertex Tracker and [3.1 GeV] North Damping Ring [1.15 GeV] 40-layer Drift PEP II Positron Return Line Positron Source IR-2 Chamber in a 1.5e-gun Detector Linac 200 MeV PEP II High Energy Bypass (HEB Tesla B-field injector Sector-10 PEP II PEP II South Damping e- injector High Energy provide [1.15 GeV] PEP II Low Energy Bypass (LEB) Ring (HER) Sector-4 PEP II [9 GeV] measurements of e+ injector for Y(4S) running track parameters Measures origin of charged particle trajectories SVT Instrumented Flux Return (IFR) DCH Measures momentum of charged particles (resistive plate chambers) Particle ID via Identifies particles by their Cherenkov radiation DIRC EMC Measures energy of electrons and photons Superconducting Solenoid IFR Identifies muons and neutral hadrons measurements of (1.5 Tesla) BABAR specific ionization **Electromagnetic Calorimeter (EMC)** (dE/dx) and (Csl crystals) Detector Cherenkov angle CsI(TI) crystal calorimeter e+ (3.1 GeV) measures photon Cherenkov radiator (DIRC) (quartz bars) energies and assists in PID **Drift Chamber (DCH)** (multiwire gas chamber) e⁻ (9 GeV) Silicon Vertex Tracker (SVT) for $\Upsilon(4S)$

running

(silicon module)

The Complete **BABAR** Dataset

- 432.89 fb⁻¹ Y(4S)
- 30.23 fb⁻¹ Y(3S)
- 14.45 $fb^{-1}\Upsilon(2S)$
- 53.85 fb⁻¹ off-resonance
 - below resonance for each on-resonance point
 - Scan above the $\Upsilon(4S)$ [10.56 GeV (open *B* threshold) to 11.2 GeV (short of Λ_b threshold at 11.24)]

 $\overline{B} \rightarrow D^{(*)} \tau^- \nu_{\tau}$

 $\overline{B} \rightarrow D^{(*)} \tau^- \nu_{\tau}$

- B semileptonic decays to τ not as well-measured as to e, μ
 - Compare (PDG2010): $\mathcal{B}(\overline{B} \rightarrow Dl^{-}\nu) = (2.23 \pm 0.11)\%$ $\mathcal{B}(\overline{B} \rightarrow D\tau^{-}\nu) = (0.77 \pm 0.25)\%$
- New physics can easily effect the branching fraction to tau – for example, the two-doublet models of Higgs sector predict differences be at tree level due to charged Higgs q interactions

Event Reconstruction

- q²=(E_{miss}+E_l)²-(p_{miss}+p_l)² is used to discriminate against e and μ semileptonic decays. Signal region is q²>4 GeV², normalization is q²<4 GeV²
- Boosted Decision Tree (BDT) used to suppress combinatoric and continuum $e^+e^- \rightarrow q\overline{q}$ backgrounds
- Improvements: Higher $\int \mathcal{L}dt$, 2.3×more B_{tag}, BDT

Fit in m^2_{miss} vs p^*_{l}

- 4 main channels: D^0 , D^+ , D^{*0} , and D^{*+} , plus D^{**} -enriched $D\pi^0$ samples
- Simulation used to fix:
 - Relative yields of continuum, B combinatoric and charge cross-feed backgrounds
 - Feed-down across different modes (e.g. so that D* feeddown in D sample is determined by yield in D* sample)
- Additional sample with π⁰ candidates reconstructed and added to D^(*) candidates used to enrich B to D^{**} decays and determine feed-down
- 10 Parameter fit to 4 signal
 channels+12 parameter fit to 4
 π⁰ control channels

*D*lv* sample

- Both charged and neutral modes reconstructed with high significance
- Consistent with SM at 1.8σ

	Nsig	B(B→D*τν)(%)	R(D*)
D*0	511±48	1.79±0.17±0.14	0.341±0.030±0.028
D*+	220±23	1.82±0.19±0.17	0.356±0.038±0.032
Constrained	730±50	1.79±0.13±0.17	0.325±0.023±0.027 BABAR Preliminary

Dlv sample

 First measurement of these modes at >5σ

These modes also
 1.8σ above SM

	Nsig	B(B→Dτν)(%)	R(D)	
D0	226±39	0.96±0.17±0.14	0.422±0.074±0.059	
D+	139±21	1.08±0.19±0.15	0.513±0.081±0.067	
Constrained	368±42	1.04±0.12±0.14	0.456±0.053±0.056	BABAR Preliminary

Figures from Manuel Sevilla's EPS talk

- Results compare well with previous average
- Improvement over previous BaBar result is better than luminosity scaling alone

B_s Production and Semileptonic Decay

The Complete **BABAR** Dataset

Inclusive ϕ (+lepton) as a probe of B_s decay

- ϕ yield from B_s large compared to $B_{u/d}$ decays:
 - $\mathcal{B}(B_s \rightarrow D_s X) \times \mathcal{B}(D_s \rightarrow \phi X) \approx 15\%$ (PDG2010)
 - vs B(B→φX)≈3.43% (PDG2010)
- ϕ +lepton:
 - $B_s \rightarrow D_s l v X_1 \rightarrow \phi l v X_2 \approx 1.3\%$ (same B_s)
 - **vs** $B \rightarrow D l v X_1 \rightarrow \phi l v X_2 \approx 0.1\%$ (same B)
 - $B_s \rightarrow lvX_1 \& B_s \rightarrow \phi X_2 \approx 1.4\%$ (different B_s)
 - **vs** $B \rightarrow lvX_1 \& B \rightarrow \phi X_2 \approx 0.4\%$ (different *B*)

→ Inclusive yields of ϕ & ϕ +lepton can be used to measure both B_s production rate ($B_s B_s / B\overline{B}$) and its semileptonic branching fraction

• Backgrounds sources: Continuum $e^+e^- \rightarrow q\overline{q} \& B_{u/d}\overline{B}_{u/d}$

Analysis Method

- Measure number of events, ϕ yield, and ϕ yield in correlation with a high-momentum lepton as a function of CM energy
- Use below BB threshold data to subtract continuum e⁺e⁻→qq
 (q=u,d,s,c) contributions. Schematically:
 - B hadron events:

$$R_b \left[f_s \epsilon_{1s} + (1 - f_s) \epsilon_1 \right]$$

• Inclusive ϕ rate:

 $R_b \left[f_s P(B_s \bar{B}_s \to \phi \mathbf{X}) \epsilon_{2s} + (1 - f_s) P(B \bar{B} \to \phi \mathbf{X}) \epsilon_2 \right]$

• Inclusive ϕ +lepton rate:

 $R_b \left[f_s P(B_s \bar{B}_s \to \phi \ell \nu \mathbf{X}) \epsilon_{3s} + (1 - f_s) P(B \bar{B} \to \phi \ell \nu \mathbf{X}) \epsilon_3 \right]$

• With

•
$$f_s \equiv \frac{\# B_s \text{ events}}{\text{all } B \text{ hadron events}}$$

and ε_i representing the corresponding efficiencies.

• $P(B_s B_s \rightarrow \phi | X)$ contains info on $\mathcal{B}(B_s \rightarrow I \nu X)$

Measurement

- Mass plots for inclusive ϕ and ϕ with lepton at 10.8225 < E_{CM} < 10.8475 GeV (other points are similar)
 - (At same energy, so right plot is subset of events on left)

Measurement

0

10.6

10.7

10.8

10.9

11

11.1

11.2 √s (GeV)

Events selected which pass multi-hadron event filters and have 2nd Fox-Wolfram moment < .2 (selecting more spherical events) Simultaneous Extraction of $Br(B_s \rightarrow l\nu X) \& f_s$

Continuum-subtracted rates given by: Event rate = $R_b [f_s \epsilon_{1s} + (1 - f_s) \epsilon_1]$

 $\phi \text{ rate} = R_b \left[f_s P(B_s \bar{B}_s \to \phi \mathbf{X}) \epsilon_{2s} + (1 - f_s) P(B \bar{B} \to \phi \mathbf{X}) \epsilon_2 \right]$

 $\phi - \ell \text{ rate} = R_b \left[f_s P(B_s \bar{B}_s \to \phi \ell \nu \mathbf{X}) \epsilon_{3s} + (1 - f_s) P(B\bar{B} \to \phi \ell \nu \mathbf{X}) \epsilon_3 \right]$

- $B_{u/d}$ contributions are measured in data taken at Υ (4S)
- f_s extracted at each energy point from number of events and ϕ yield
- *B_s* contributions depend on:
 - $\mathcal{B}(B_s \to D_s X_i)$ (PDG), $\mathcal{B}(B_s \to I\nu X_i)$, $\mathcal{B}(D_s \to I\nu X_k)$ (PDG), $\mathcal{B}(D_s \to \phi X_m)$ (PDG), $\mathcal{B}(D_s \to \phi I\nu X_n)$ (PDG) and others
- A χ^2 fit is performed to the measured yields to extract $\mathcal{B}(B_s \rightarrow I\nu X)$

Results

Other Semileptonic Results of Note

- $|V_{ub}|$ measured using inclusive decays with the entire **BABAR** dataset
 - Hadronic B reconstruction plus lepton ID with 2D fit in q² and M_X (invariant mass of B daughters)
 - Extraction based on 4 QCD calculations (BLNP, DGE, GGOU, ADFR)
 - (Preliminary) average $|V_{ub}|_{incl} = (4.31 \pm 0.25 \pm 0.16) \times 10^{-3}$
 - (Compare with 4.27±0.38 from 2010 PDG review on CKM elements)
 - To be submitted to PRD
- $|V_{ub}|$ measured in the in the exclusive $B \rightarrow \pi l v$ channel
 - No "tag B" reconstruction for this analysis. Instead, a fit in DE and m_{ES} of lepton-pion-missing energy/momentum system is used.
 - BF extracted in bins of q^2 and LQCD prediction used to extract $|V_{ub}|$
 - $|V_{ub}|_{excl}$ =(3.13±0.14±0.27)×10⁻³
 - (Compare with 3.38±0.36 from 2010 PDG review on CKM elements)
 - Phys. Rev. D 83, 032007 (2011) and Phys. Rev. D 83, 052011 (2011)
 - Tension in inclusive vs exclusive measurements persists
 - See Manuel Sevilla's talk at EPS for more detail