BABAR Results on Leptonic and Radiative B and Charm Decays

Brad Wray The University of Texas at Austin (For the *BABAR* Collaboration)

DPF 2011-Brown University August 10, 2011

Outline

- Radiative and Leptonic Decays
- The BABAR Detector and Dataset
- $A_{CP}(B \rightarrow X_{s+d} \gamma)$
- $B \rightarrow K \nu \bar{\nu}$
- $B^+ \rightarrow \tau^+ \nu_{\tau}$
- $D_s \rightarrow \ell^- \bar{\nu}_\ell$
- Summary

Radiative and Leptonic Decays

- Radiative Decays
 - Lowest order SM contributions often involve loops $(B \rightarrow X_s \gamma, B \rightarrow X_d \gamma)$
 - Sensitive to new, heavy virtual particles in loops
 - BFs typically ~ 10^{-4} or less
- Leptonic Decays
 - Clean probe of theoretical quantities
 - BFs ~ 10⁻⁴ (10⁻² for charm) or less due to helicity suppression and CKM factors
- Offer precision tests of Standard Model predictions
 - Any large deviation from SM prediction could be an indication of New Physics
 - Low energy indirect NP searches are complimentary to direct searches at high energy machines like LHC and Tevatron

The BABAR Detector & Dataset

 $A_{CP}(B \to X_{s+d} \gamma)$

$A_{CP}(B \rightarrow X_{s+d} \gamma)$: Background and Predictions

- LO contribution electroweak penguin
 - Measurable inclusive rate equal within a few % of partonic rate
- New Physics may enter at same order as SM
 - Sizable deviations from SM predictions (BF & A_{CP})
- SM $\mathcal{B}(B \rightarrow X_s \gamma)$ at NNLO $(E_{\gamma} > 1.6 \text{ GeV})$
 - $\mathcal{B}(B \to X_s \gamma) = (3.15 \pm 0.23) \times 10^{-4}$ [1]
- Direct *CP* asymmetry [2]

$$A_{CP} = \frac{\Gamma(b \to s\gamma + b \to d\gamma) - \Gamma(\bar{b} \to \bar{s}\gamma + \bar{b} \to \bar{d}\gamma)}{\Gamma(b \to s\gamma + b \to d\gamma) + \Gamma(\bar{b} \to \bar{s}\gamma + \bar{b} \to \bar{d}\gamma)}$$

- $A_{CP} (B \rightarrow X_{s+d} \gamma) \approx 10^{-6}$
- Photon spectrum moments
 - Can be used to extract HQE parameters m_b and μ_{π^2}

$A_{CP}(B \rightarrow X_{s+d} \gamma)$: Analysis Strategy

* indicates $\Upsilon(4S)$ frame

- Measurement uses 347 fb⁻¹
- High energy photon: $1.5 < E^*_{\gamma} < 3.5 \text{ GeV}$
- Veto π^0/η decays
- Continuum background
 - Leptonic tag
 - e/μ candidate with $p^*_{\ell} > 1.05 \text{ GeV}/c$
 - $\cos \theta^*_{\gamma,\ell} > -0.7$
 - $E^*_{\text{miss}} > 0.7 \text{ GeV}$
 - Neural network exploiting jet-like topology
 - Remaining background subtracted using scaled off-resonance data
- $B\overline{B}$ background
 - Subtracted using data corrected MC

Search for $B \rightarrow K \nu \bar{\nu}$

Phys. Rev. D 82, 112002 (2010)

$B \rightarrow K \nu \bar{\nu}$: Analysis Strategy

- FCNC in SM \Rightarrow must proceed through loops
 - $\mathcal{B}(B^+ \rightarrow K^+ \bar{\nu} \nu) \approx 3.8 \ge 10^{-6}$
 - Sensitive to new heavy particles appearing in loops \Rightarrow may increase $\mathcal{B}(B^+ \rightarrow K^+ \bar{\nu} \nu)$ 10x SM value
- Presence of two neutrinos \Rightarrow few kinematic handles available for reconstruction of signal *B*
 - Reconstruct "other *B*" in event in $B \rightarrow D^{(*)} \ell \nu$ mode (larger efficiency than hadronic tag)
 - Look for signal decay among remaining particles in event

Charm meson modes reconstructed in semileptonic tagging

$B \rightarrow K \nu \overline{\nu}$: Analysis Strategy

- Suppress large remaining background using ensemble of Bagged Decision Trees (BDT)
 - Trained on simulated signal and background events
 - Ensembles use 26 (K^+) or 38 (K^0_s) variables relating to:
 - missing four-momentum
 - overall event properties
 - signal kinematics
 - Tag *B* reconstruction quality
- Selection chosen to optimize signal significance: s/(s+b)^{1/2}

 $B \rightarrow K \nu \overline{\nu}$: Results

[3] Phys. Rev. D 82, 112002 (2010)

Expected events						
Mode	e (in %)	$N_{ m sg}$	gnl	1	V _{bkgd}	
K^+	0.16	$2.9 \pm$	0.4	17.6 ±	$= 2.6 \pm 0.9$	
$K^0_{\scriptscriptstyle S}$	0.06	$0.5 \pm$: 0.1	$3.9 \pm$	1.3 ± 0.4	
low- $q^2 K^+$	0.24	$2.9 \pm$	0.4	17.6 ±	$= 2.6 \pm 0.9$	
high- $q^2 K^+$	0.28	$2.1 \pm$	0.3	187 =	$\pm 10 \pm 46$	
Observed events						
Mode	$N_{ m c}$	bs	$N_{\rm e}$	xcess	Prob.	
K^+	19.4	$+4.4 \\ -4.4$	1.8	+6.2 -5.1	38%	
K^0	6.1^{-}	-4.0	2.2	+4.1	23%	
low- $q^2 K^+$	19.4	$+4.4 \\ -4.4$	1.8	+6.2 -5.1	38%	
high- $q^2 K^+$	164	$+13^{-13}$	-2	3^{+49}_{-48}	33%	
Upper limits						
Mode	E	BF	90%	6 CL	$95\%~{ m CL}$	
	$\times 1$	0^{-5}	$\times 1$	0^{-5}	$\times 10^{-5}$	
K^+	0.2	$^{+0.8}_{-0.7}$	1	.3	1.6	
K^0	1.7	$+3.1 \\ -2.1$	5	.6	6.7	
Comb. K^+, K^-	$C^0 = 0.5$	$+\tilde{0}.\dot{7}$ -0.7	1	.4	1.7	
Low- $q^2 K^+$	0.2	$+0.6 \\ -0.5$	0	.9	1.1	
$\operatorname{High}_{q^2} K^+$	-1.8	$8^{+3.8}_{-3.8}$	3	.1	4.6	

DPF 2011 - August 10, 2011

 $B^+ \rightarrow \tau^+ \nu_{\tau}$

$B^+ \rightarrow \tau^+ \nu_\tau$: Analysis strategy

- Few kinematic handles to reconstruct signal *B*
- Fully reconstruct "other *B*" (tag *B*)
 - Remove many tracks and clusters from further consideration
 - Only consider decay modes with >10% purity
 - Reconstruct signal from remaining clusters and tracks
- Look for a single charged track in rest of event
 - Reconstruct four τ decay modes: $e^+\nu\nu$, $\mu^+\nu\nu$, $\pi^+\nu$, $\rho^+\nu$ (~70% total BF)
- Reject background using likelihood ratio
 - $D^{(*)0}/J/\psi$ momentum in CM
 - Magnitude of tag *B* thrust
 - Cosine of angle between tag *B* thrust and thrust of rest of the event

$B^+ \rightarrow \tau^+ \nu_{\tau}$: Results

- Most powerful discriminating variable: E_{extra} (sum of neutral cluster energy not associated w/ tag *B* or π^0 from ρ^+ decay)
- Optimize for smallest statistical + systematic uncertainty
- Unbinned extended maximum likelihood fit to E_{extra}
 - Simultaneously fit 4 τ decay modes
 - Signal PDF from MC
 - Combinatorial PDF from m_{ES} side band
 - Peaking PDF from B^+B^- MC

System	matics				
Source of systematics	BF ur	certainty (%)			
B counting		0.5			
Tag B efficiency		5.0			
Background PDF		12			
Signal PDF		1.7			
MC statistics		0.8			
Electron identification	1	2.6			
Muon identification		4.7			
Kaon identification		0.4			
Tracking		1.4			
Total		14			
JPF 2011 - August 10, 2011					

 $B^+ \rightarrow \tau^+ \nu_{\tau}$ using semileptonic tag

Phys. Rev. D RC 82, 091103 (2010)

$D_s \rightarrow \ell^- \overline{\nu}$: Background

- Clean probe of f_{Ds}
 - Compare with SM prediction from LQCD
- Previously, tension between measured value of f_{Ds} and LQCD prediction of ~3 σ [1]

Leptonic branching fraction

$$\mathcal{B}(D_s^- \to \ell^- \bar{\nu}) = \frac{G_F^2}{8\pi} |V_{cs}|^2 f_{D_s} m_{D_s} m_\ell^2 \left(1 - \frac{m_\ell^2}{m_{D_s}^2}\right)^2$$

[1] C. Davis *et al.*, PRD 82, 114504 (2010)

• $D_s \rightarrow e^{-}/\mu^{-} v$

 $D_s \rightarrow \tau \nu_{\tau}, \tau \rightarrow e^{-}/\mu^{-} \nu_{\tau}$

$D_{s} \rightarrow \ell^{-} \overline{\nu}$: Analysis Strategy

- $D_s \rightarrow e^{-}/\mu^{-} v$
 - Only one charged track remaining in event (ID as lepton)
 - Kinematic fit for neutrino mass
 - Mass recoiling against $DKX\gamma$ constrained to PDG mass of D_{s^+}
 - Binned maximum likelihood fit to mass recoiling against $DKX\gamma e/\mu$ system squared to extract yield
- $D_s \rightarrow \tau \cdot \nu_\tau, \tau \rightarrow e \cdot / \mu \cdot \nu \nu_\tau$
 - Only one charged track remaining in event (ID as lepton)
 - Multiple neutrinos in event
 - Binned maximum likelihood fit to *E*_{extra} (sum of EMC energy not associated with *DKXγ* or *D_s*-)
 - Peaks near zero for signal

 $D_s \rightarrow \ell^- \bar{\nu}$: Results

Phys. Rev. D RC 82, 091103 (2010)

Summary

- Radiative and leptonic *B* and charm decays provide precision tests of Standard Model predictions
- Excellent environment to search for physics beyond SM and to constrain parameter space of New Physics models
- All results presented are consistent with SM expectations
- We look forward to interesting flavor results coming from LHCb and, in the more distant future, Belle-2 and SuperB.

