ISR Hadron Production in e+e- and Meson Meson Transition Form Factors

David Muller, SLAC representing the BaBar collaboration

DPF Meeting, August 12, 2011, Brown University

- Introduction to BaBar
- Initial State Radiation
 - the KKππ final states and the Y(2175)
 - the π+π- final state
 - effect on g_μ-2
- Summary

- Transition Form Factors
 - timelike η, η'
 - spacelike π^0 , η , η' , η_c
 - discussion

The BaBar Experiment

 e+e- collisions at E_{CM}=10.6 GeV, designed for CP violation in B decays

Different beam energies

 \rightarrow E_e- = 9.0 GeV

 \rightarrow E_{e+} = 3.1 GeV

 \rightarrow c.m.-lab boost, $\beta\gamma$ =0.55

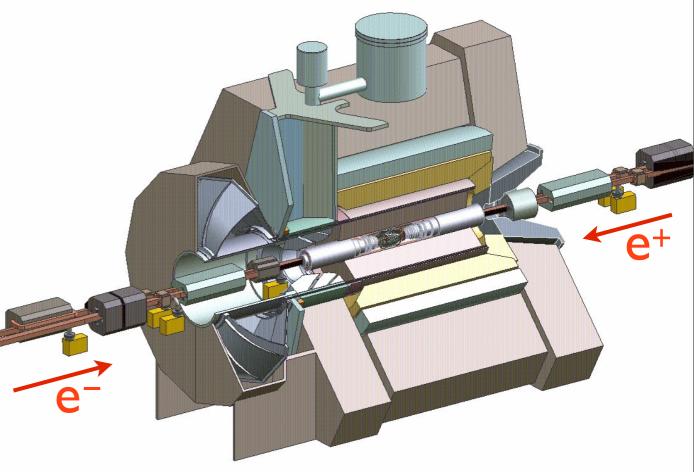
Asymmetric detector

→ c.m. frame acceptance

 $-0.9 \sim \cos \theta^* \sim 0.85$

wrt e- beam

- → good tracking, mass resolution
- \rightarrow good γ , π^0 recon.
- \rightarrow full e, μ , π ,K,p ID


→ ~520 fb⁻¹ accumulated

→1.7 billion e+e-→qq events

 \leftrightarrow 12 million e+e− \rightarrow γ_{ISR}ρ⁰

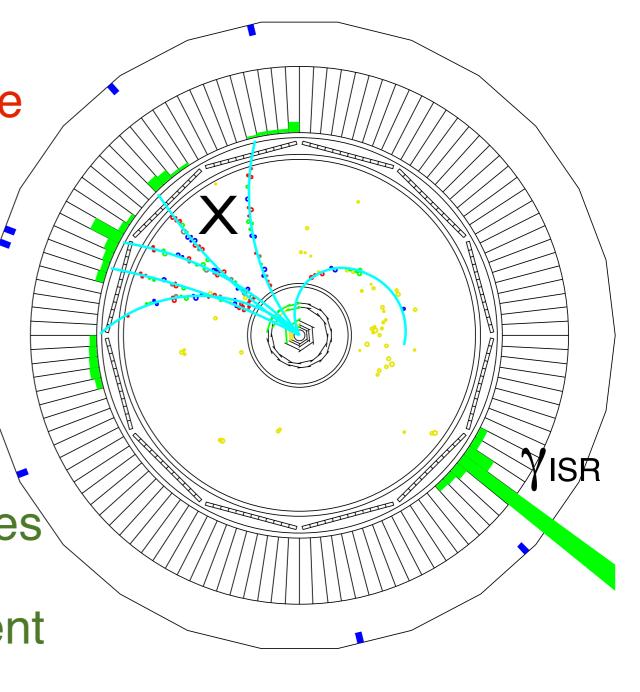
 \leftrightarrow 1 million e+e- \rightarrow e+e- π^0

→ 232-480 fb⁻¹ used

Initial State Radiation in e+e- Annihilations

- $e^+e^- \rightarrow \gamma_{ISR}e^+e^- \rightarrow \gamma_{ISR}\gamma^* \rightarrow \gamma_{ISR}X$
- X is any allowed (hadronic) system, e.g.,
 - → a resonance with J^{PC}=1--
 - → two particles with compatible quantum numbers
 - → 3, 4, ... particles
 - → 2 or more jets
- the cross section: $d\sigma(s,s',\theta_{\gamma})/ds'dcos \theta_{\gamma} = W(s,s',\theta_{\gamma})\sigma(s')$
- the radiator function W is known to ~1%
- measure $\sigma(e^+e^- \rightarrow X)$ vs. $m = m_{\gamma^*} = m_X = E_{CM} = \sqrt{s'}$

 ISR gives simultaneous access to a continuous, wide s' range in a single experiment


→ very small point-to-point systematic errors

• if the γ_{ISR} is detected then the system X is also well contained in the detector

→ minimal acceptance issues

measure the full angular distribution and other event structure variables

- the hadronic system X is boosted
 - → can measure all the way down to threshold with good efficiency
- also
 - → mass resolution worse than collider E_{CM} spread
 - → need very high luminosity at the nominal E_{CM}

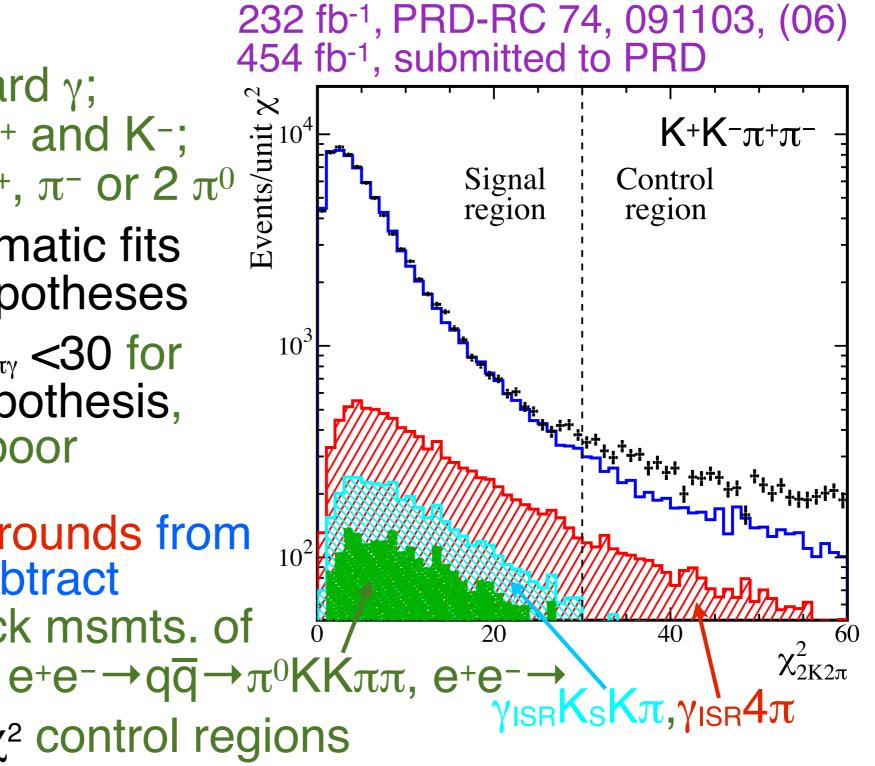
The K+K-π+π- and K+K-π⁰π⁰ Final States

event selection:

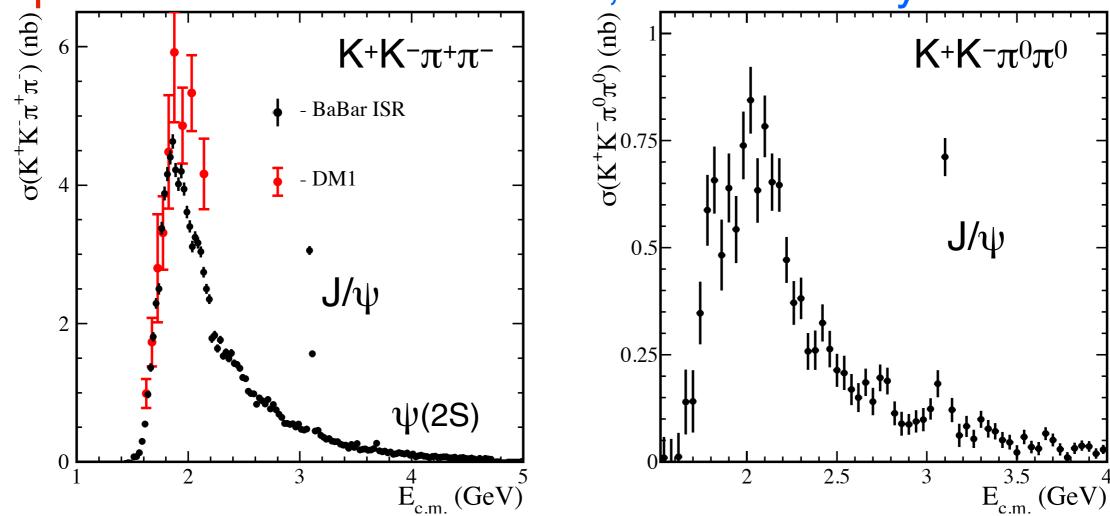
 \rightarrow require: a hard γ ; identified K+ and K-; identified π^+ , π^- or 2 π^0

→ perform kinematic fits to various hypotheses

 \rightarrow select if $\chi^2_{KK\pi\pi\gamma}$ <30 for the signal hypothesis, other χ^2 are poor

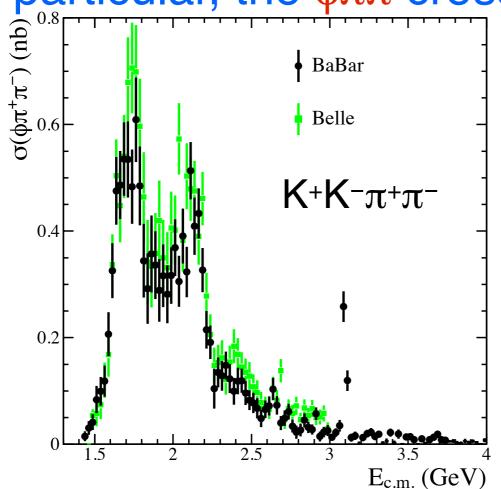

 measure backgrounds from the data and subtract

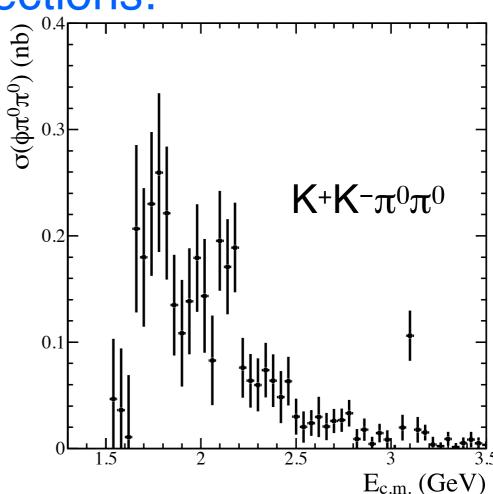
→ previous/quick msmts. of


 \rightarrow others from χ^2 control regions

measure efficiencies from the data

→ events with missing particles




updated cross sections: 5%, 7% overall systematic

- \rightarrow improved world best K+K- π + π -, only K+K- π 0 π 0 msmt.
- → several hints of structure in the 2-3 GeV range
- \rightarrow clear signals for J/ ψ , ψ (2S) \leftrightarrow branching ratios
- observe considerable substructure
- → measure cross sections for e+e-→ K^{*0} (890) $K\pi$, $K_{2}^{*}(1430)^{0}K\pi$, $K^{+}K^{-}\rho^{0}(770)$, ...
- \rightarrow see K*0(890)K*0(890), K*0(890)K*2(1430)0, K1(1270)K, ...

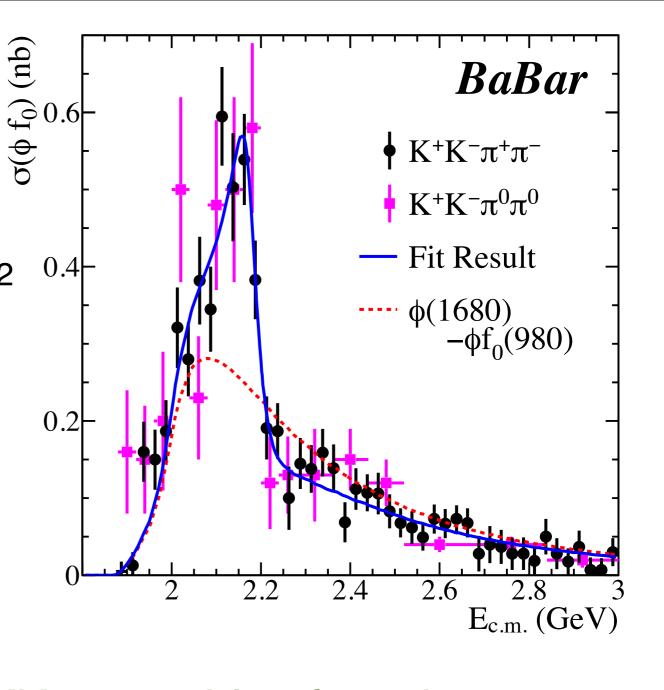
• in particular, the $\phi\pi\pi$ cross sections:

PRL

PRD

100, 102003 (08)

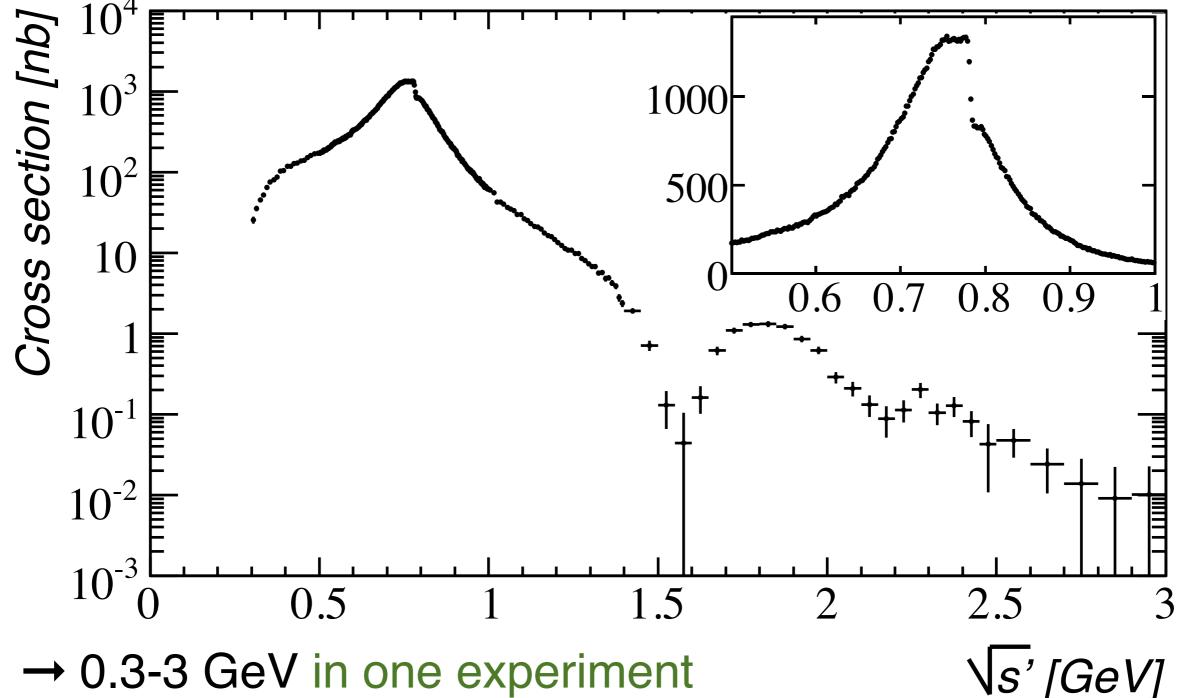
80, 031101 (09)


- → show 2-peak structure near threshold
- \rightarrow lower-mass peak expected from $\phi(1680)$
- the second peak is a new resonance, the Y(2175)
 - \rightarrow first reported by BaBar at 5.6 σ PRD-RC 76, 012008 (07)
 - → confirmed by BES
 - → confirmed by Belle
 - \rightarrow observed in this study at 9.3 σ
 - \rightarrow K+K- π + π and K+K- π 0 π 0 modes consistent

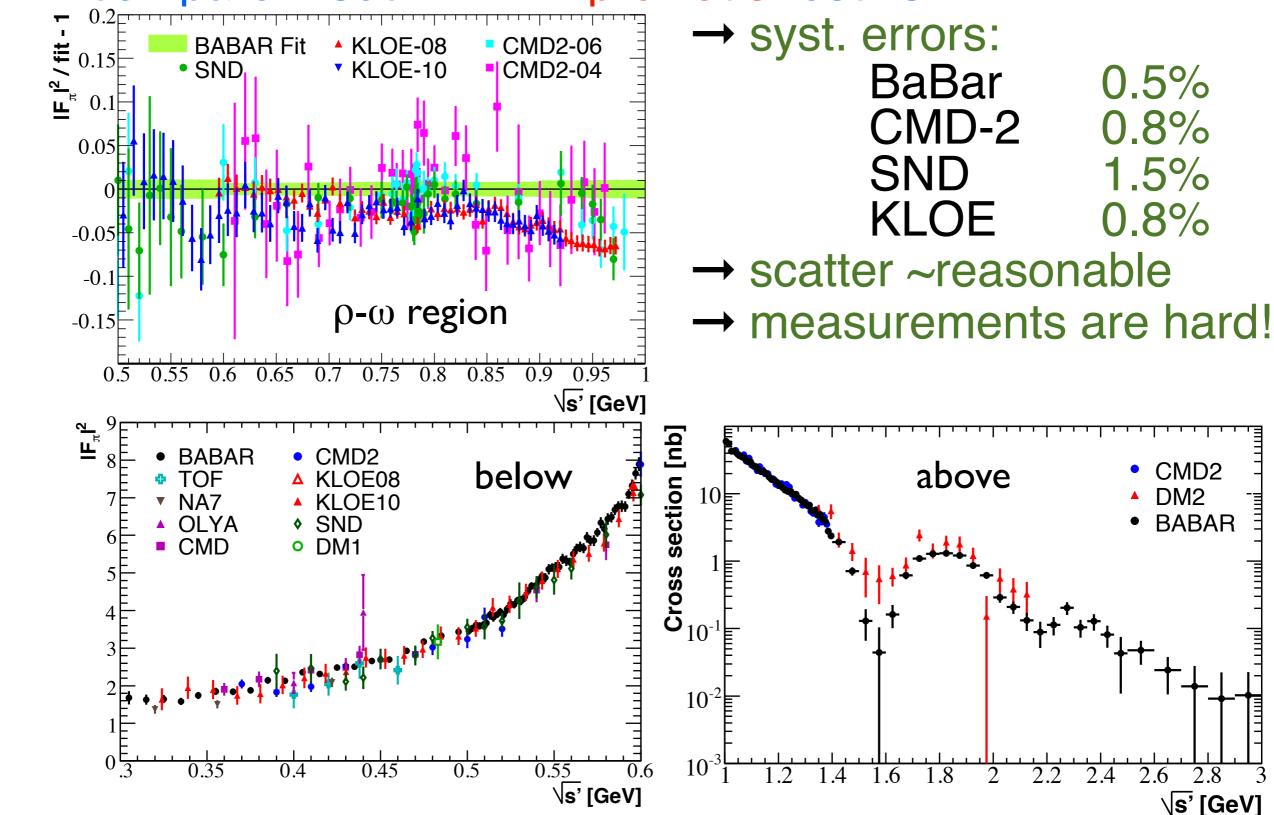
What is this new state?

 simultaneous fit to several mass distributions gives:

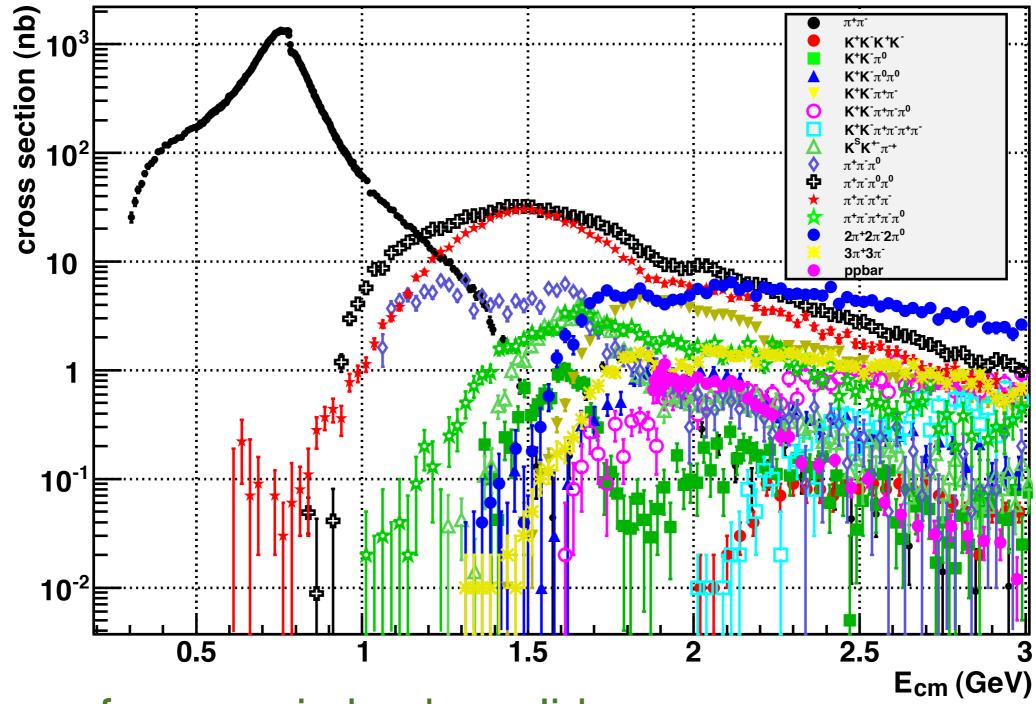
m_Y: 2180± 8± 8 MeV/c²
$$\Gamma_{Y}$$
: 77± 15± 15 MeV σ_{Y} : 93± 21± 10 pb ψ_{Y} : -2.11±0.24±0.12 rad wrt ϕ (1680)


- decay modes:
 - $\rightarrow \phi f_0(980)$ dominant
 - \rightarrow hint of non- ϕ KKf₀
 - \rightarrow no evidence for ϕ ππ or KKππ outside ϕ f₀ region
 - \Rightarrow unlikely to be a ϕ''
- mass is just below $\Lambda \overline{\Lambda}$ threshold \rightarrow is it an $s\overline{s}s\overline{s}$ state?
 - \rightarrow is it analogous to the Y(4260), which is just below $\Lambda_c \Lambda_c$ threshold and decays to J/ $\psi \pi \pi$?
 - → ...or some other charmonium-like state?

The π+π- Final State


- extremely detailed analysis, 232 fb⁻¹, PRL 103, 231801 (09) aim for <1% precision:
 - \rightarrow require a hard γ , ID'd π^+ and π^- (or $\mu^+\mu^-$ or K+K-)
 - → measure effects of additional ISR and FSR
- measure $e^+e^- \rightarrow \gamma_{ISR}\mu^+\mu^-$, $\gamma_{ISR}K^+K^-$ simultaneously
 - → particle ID efficiency, error from the data
- measure other backgrounds from the data
 - \rightarrow e+e- \rightarrow q \overline{q} \rightarrow $\pi^0\pi^+\pi^-$, $\pi^0\mu^+\mu^-$, $\pi^0K^+K^-$: comb γ_{ISR} , other γ
 - → other ISR: previous or dedicated measurements
- measure trigger and tracking efficiencies in the data
 - → including correlations, dead regions, etc.
- check: $\mu^+\mu^ \mu^ \mu^-$

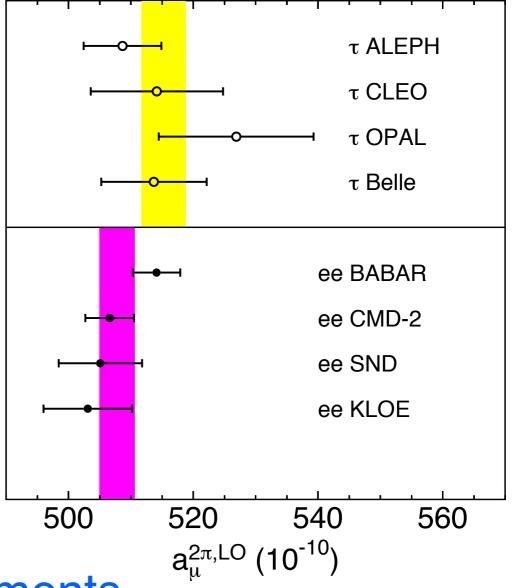
- use that to normalize the $\pi^+\pi^-$ cross section
 - → measurement unfolded for mass resolution


- → 0.3-3 GeV in one experiment
- → 0.5% systematic error near ρ peak
- \rightarrow see ρ - ω interference
- \rightarrow much structure above 1.2 GeV \leftrightarrow excited ρ states

compare x-sec/FF with previous results

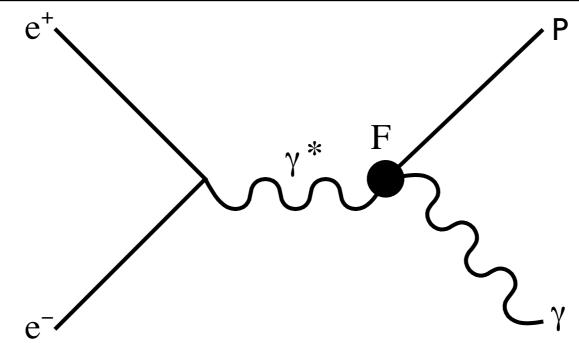
- → similar comments at low E_{CM}, for 1-1.4 GeV
- → dominant (only) measurement above 1.4 (2.2) GeV

BaBar has also measured numerous other modes


- → references in backup slides
- → typical systematic uncertainty ~1% / particle
- \rightarrow need K+K-, K_SK_L, K_SK_L $\pi\pi$, K_SK+ π - π^0 , π + π - $3\pi^0$, π + π - $4\pi^0$
- \rightarrow 1-2 GeV region is critical for g_{μ} -2, $\alpha(M_Z)$ calculations

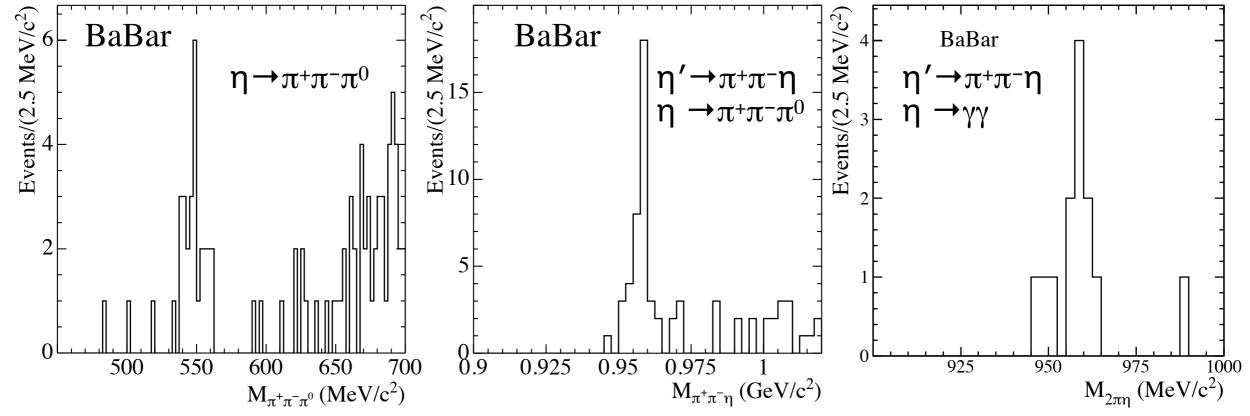
The Anomalous Muon Magnetic Moment

• the theoretical calculation of $g_{\mu}-2$ requires the integral

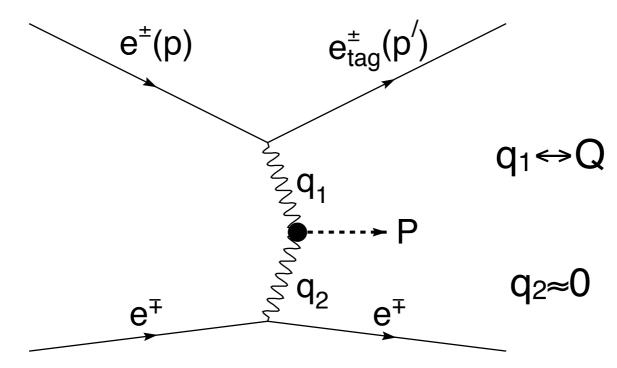

 $a_{\mu}^{had} = \frac{1}{4\pi^3} \int_{4m\pi^2}^{\infty} K(s) \sigma_{had}(s) ds,$ with K(s) ~ 1/s

- the e⁺e⁻→π⁺π⁻ process dominates this integral
 - our measurement is an important contribution
- next largest uncertainty is from the 1-2 GeV region
 - → many important contributions from BaBar here

- overall effect of BaBar measurements
 - → reduce error on global fits by ~20%
 - → move value slightly closer to the SM value
- currently, the theory and experimental values differ by $(28.7+8.0)x10^{-10}$, or 3.6σ M. Davier, et al., EPJC 71, 1515 (11)

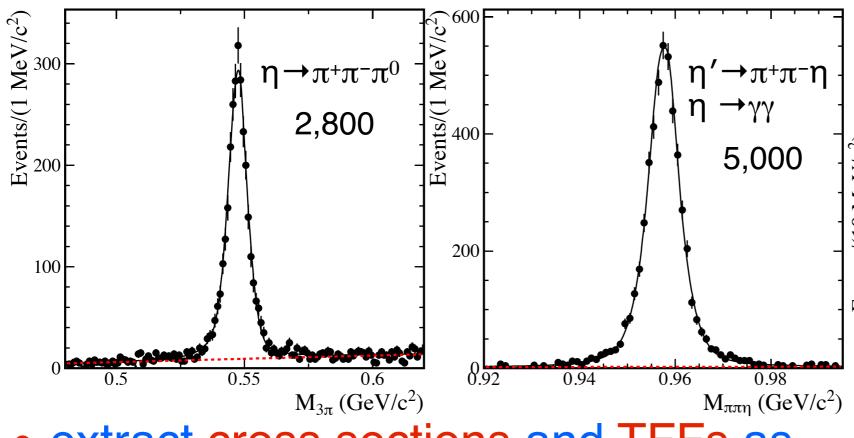

Timelike Transition Form Factors

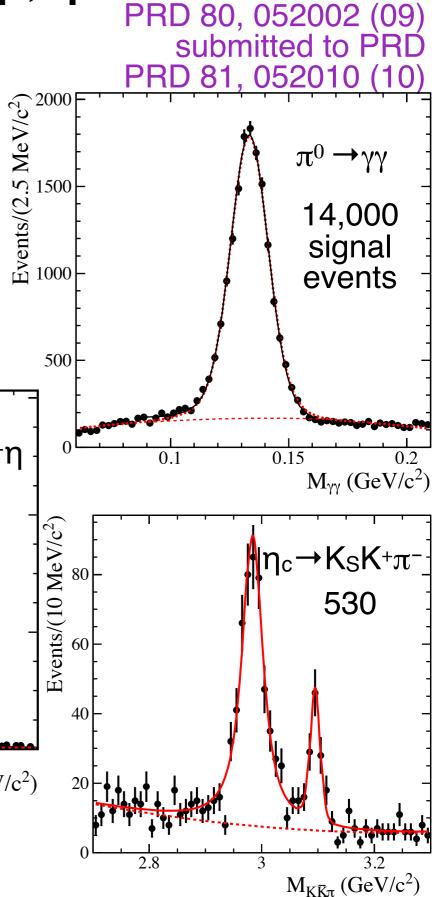
- e+e- $\rightarrow \gamma^* \rightarrow \gamma P$, where P is any pseudoscalar meson
- characterized by a transition form factor (TFF) F(Q²)
 - \rightarrow Q² is the mass of the γ^*
 - \rightarrow timelike \Leftrightarrow Q² > 0
- F can be related to the distribution amplitudes $\Phi(x,Q^2)$ of quarks in P carrying momentum fraction x
 - \rightarrow Q² dependence calculable from $\Phi \Leftrightarrow$ model tests
 - → asymptotic value of Q²F(Q²) can be related to the meson decay constant ⇔ test of QCD


e+e⁻ $\rightarrow \gamma \eta$ and $\gamma \eta'$ 232 fb⁻¹, PRD 74, 012002 (06)

- analysis very similar to ISR:
 - \rightarrow require: a hard γ ; 2-4 charged tracks; 2 more γ
 - reconstruct $\eta \to \pi^+\pi^-\pi^0$, $\pi^0 \to \gamma\gamma$; $\eta' \to \pi^+\pi^-\eta$, $\eta \to \pi^+\pi^-\pi^0$, $\gamma\gamma$
 - \rightarrow select $\chi^2_{\eta^{(\prime)}\gamma}$ <30, obtain clean signals

- extract the cross sections
 - $\rightarrow \sigma(e^+e^-\rightarrow \eta\gamma) = 4.5\pm 1.2\pm 0.3 \text{ fb}$
 - $\rightarrow \sigma(e^+e^-\rightarrow \eta'\gamma) = 5.4\pm0.8\pm0.3 \text{ fb}$


Spacelike Transition Form Factors


- e+e- \rightarrow e+e- $\gamma^*\gamma^*$ \rightarrow e+e-P, P a pseudoscalar meson
- characterized by a TFF F(q₁², q₂²)
 - \rightarrow q² is the mass of the γ^*
- consider the "single tag" case, where
 - \rightarrow q₁² is large, the e⁺ or e⁻ is detected
 - → q²₂ is small, the e⁻ or e⁺ is emitted along the beam and the second photon is quasi-real
 - \Rightarrow then $q_2^2 \approx 0$, and $F(q_1^2, q_2^2) \rightarrow F(-q_1^2) \equiv F(Q^2)$

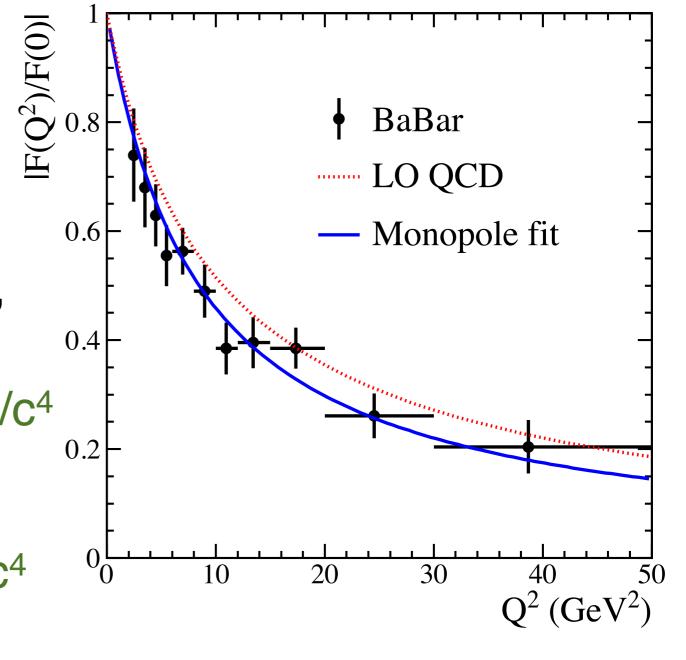
$e^+e^- \rightarrow e^+e^-\pi^0, \eta/\eta', \eta_c$

- analysis similar to ISR:
 - \rightarrow require: a hard, ID'd e±; 0-4 π±; 0-1 K±; 0-2 more γ
 - \rightarrow reconstruct $\pi^0 \rightarrow \gamma \gamma$; $\eta \rightarrow \pi^+ \pi^- \pi^0$; $\eta' \rightarrow \pi^+ \pi^- \eta$; $\eta_c \rightarrow K_S K \pi$
 - → kinematic requirements yield clean signals

 extract cross sections and TFFs as functions of Q²

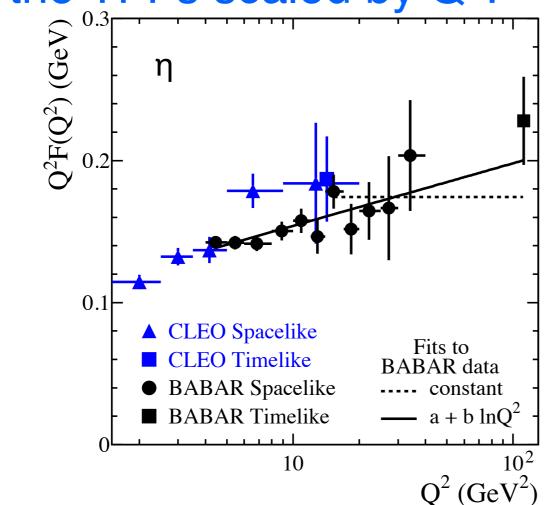
442, 469, 469 fb⁻¹

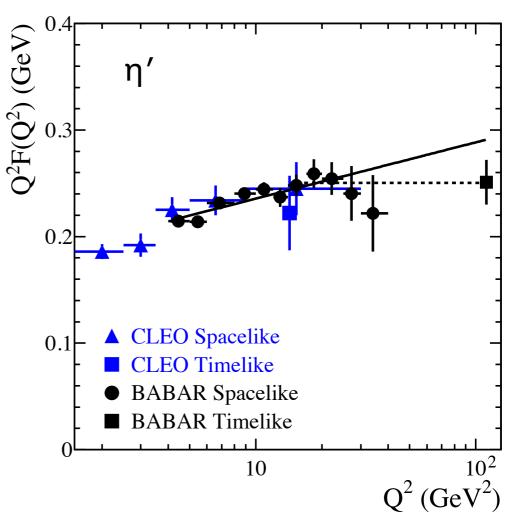
Results for the η_c


- measure untagged events also
 - → corresponds to F(0)
 - \rightarrow also gives nice measurements of η_c mass, width
- normalize the η_c TFF to the value at Q²=0
 - → slightly below the leading order QCD prediction
 - described well by a monopole function,

$$F(Q^2)=F(0) / (1+Q^2/\Lambda),$$
 with

 $\Lambda = 8.5 \pm 0.6 \pm 0.7 \text{ GeV}^2/c^4$


→ vector dominance predicts


$$\Lambda = m^2 J/\psi = 9.6 \text{ GeV}^2/c^4$$

Results for η and η'

• the TFFs scaled by Q²:

- → consistent with CLEO results
- → time- and spacelike points consistent
- → all consistent with ~logarithmic rise with Q² ...
- → toward an asymptotic value (----)...
- → or a continued rise (——)....
- theoretical asymptotic values depend on η-η' mixing...

Results for π^0

- the scaled TFFs:
 - → consistent with **CELLO** and **CLEO**
 - → consistent with a rise over the full measured range
 - → exceed the predicted asymptotic value of $\sqrt{2}f_{\pi} = 0.185 \text{ GeV}$

for $Q^2 > 10 \text{ GeV}^2$

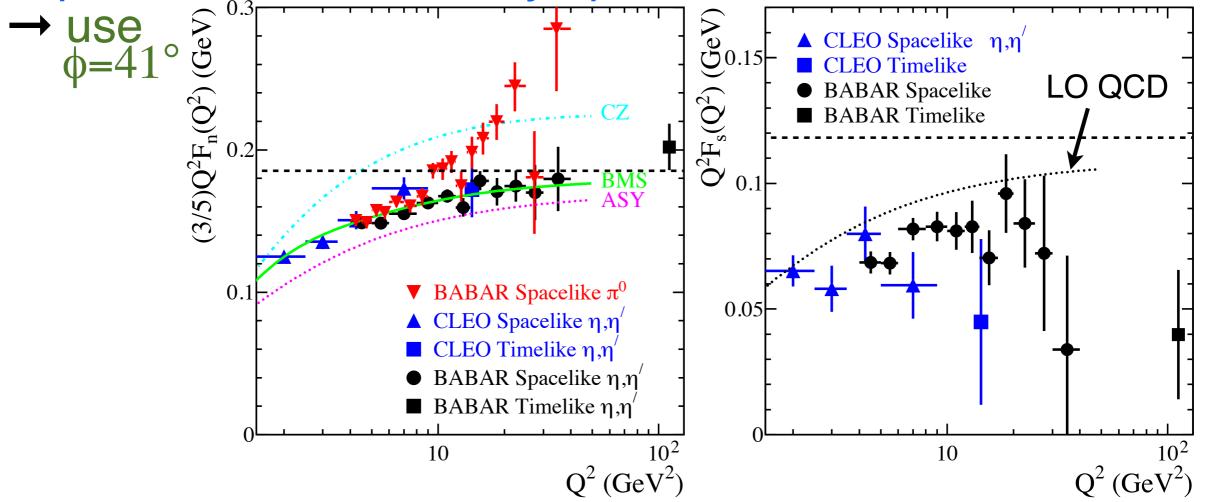

 theoretically predicted 30 DAs did not describe the Q² dependence

→ ASY = asymptotic

CZ = Chernyak-Zhitnitsky BMS = Bakulev-Mikhailov-Stefanis

⇒ need for higher order corrections?

⇒ ...or new models for the distribution amplitudes?


 since then, a flurry of H.N.Li & S.Mishima theoretical activity: PRD 80, 074024 (09) → a few examples: $Q^2 F_{\pi\gamma}(Q^2)$ [GeV] 0.25 $Q^2 F_{\gamma \pi}(Q)$ Fit results: N=1.3±0.2, 0.30 m=0.65±0.05GeV Asymptotic DA, LO 0.25 Asymptotic DA, NLO Flat DA, LO 0.05 0.20 Flat DA, NLO Q^2 [GeV²] M.V.Polyakov, JETPL 90, 228 (09) Agaev, Braun, Offen, Porkert, PRD 83, 054020 (11) **FFcello** $Q^2F_{\pi^0\gamma^*\gamma}(Q^2)$ **FFcleo** 0.25 Q²F __(Q²)(GeV) 0.20 0.15 0.10 Dorokhov, arXiv:1003.4693 0.05 Model

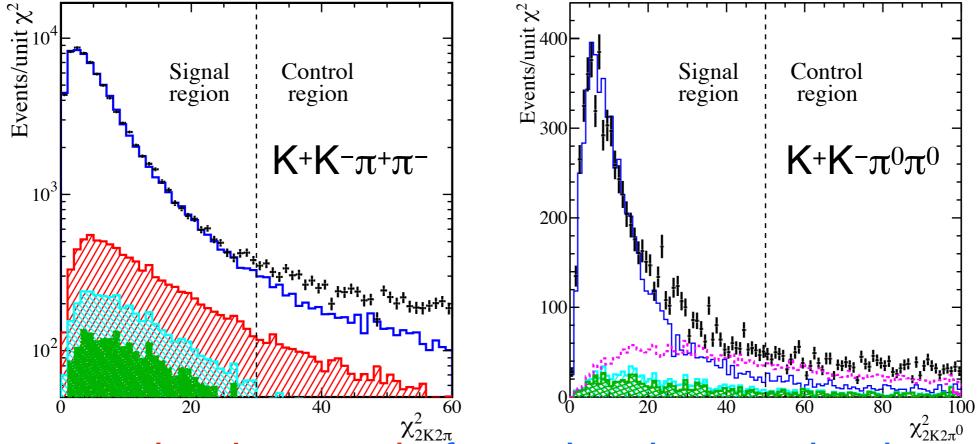
30

now need better, higher-Q² measurements

 $Q^2(GeV^2)$

- the η and η' have nonstrange and strange components:
 - $\rightarrow |n\rangle = (|u\overline{u}\rangle + |d\overline{d}\rangle) / \sqrt{2}, \quad |s\rangle = |s\overline{s}\rangle$
 - $\rightarrow |\eta\rangle = \cos\phi |n\rangle + \sin\phi |s\rangle, \quad |\eta'\rangle = \sin\phi |n\rangle + \cos\phi |s\rangle$
- expect $f_n \approx f_\pi$, $f_s \approx 1.34 f_\pi$, asymptotic TFF of $5\sqrt{2}f_n/3$, $2f_s/3$

- \rightarrow F_{π} inconsistent with F_n for Q² > 10 GeV²
- \rightarrow BSM describes F_n well; CZ, ASY describe Q² dep.
- → F_s lies below the QCD prediction
- \rightarrow ...though F_s depends strongly on ϕ , ...

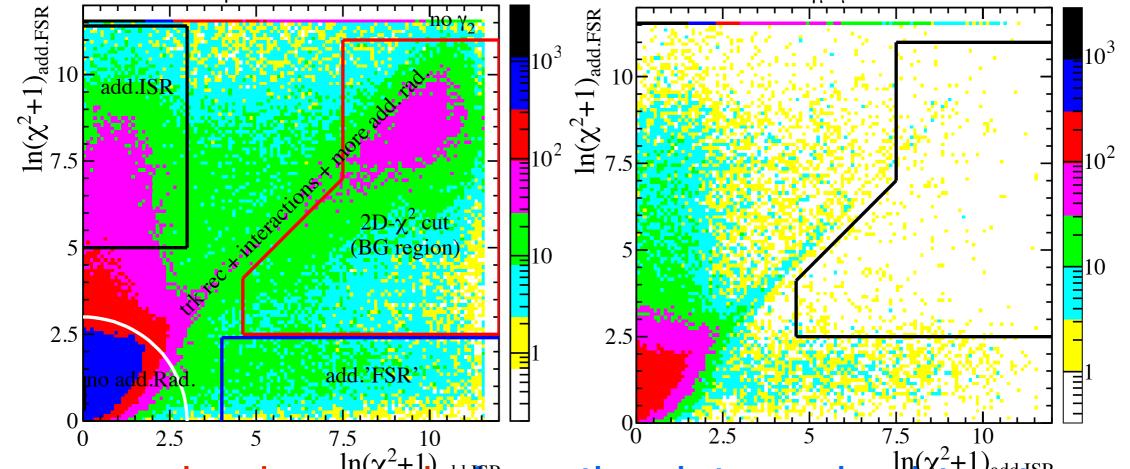

Summary

- BaBar has made huge contributions to hadron physics via initial state radiation
 - → e+e- annihilations at low energy
 - → meson and baryon form factors
 - → discovery of new states and spectroscopy of others
 - \rightarrow improved understanding of R, g_{μ} -2, $\alpha(M_Z)$
- BaBar has made new/improved measurements of meson transition form factors
 - $\rightarrow \eta$, η' at 10.6 GeV via e+e- $\rightarrow \gamma \eta$, $\gamma \eta'$
 - $\rightarrow \pi^0$, η , η' , η_c via two photon collisions
- much more could be done!
 - → more measurements expected from BaBar, Belle
 - → limited by people, statistics
 - → even better at a super B factory

Backup Slides

The K+K- π + π - and K+K- π 0 π 0 Final States

- event selection: 232 fb⁻¹, PRD-RC 74, 091103, (06) update with 454 fb⁻¹, submitted to PRD
 - \rightarrow require: a hard γ ; ID'd K+ and K-; ID'd π +, π or 2 π^0
 - → perform kinematic fits to various hypotheses
 - \rightarrow select $\chi^2_{KK\pi\pi\gamma}$ <30 or 50, use other χ^2 values



- measure backgrounds from the data and subtract
 - \rightarrow e⁺e⁻ \rightarrow qq \rightarrow π^0 KK $\pi\pi$ (n π^0): form π^0 from γ_{ISR} + other γ
 - \rightarrow e⁺e⁻ $\rightarrow \gamma_{ISR}K_SK_{\pi}$, $\gamma_{ISR}4\pi$, $\gamma_{ISR}KK_{\pi}^0/\eta/3\pi^0$: prev. msmts.
 - \rightarrow others: from χ^2 control regions

The $\pi^+\pi^-$ Final State

- extremely detailed analysis, 232 fb⁻¹, PRL 103, 231801 (09) aim for sub-% precision; event selection:
 - \rightarrow require: a hard γ ; ID'd π^+ and π^- (or $\mu^+\mu^-$ or K+K-)

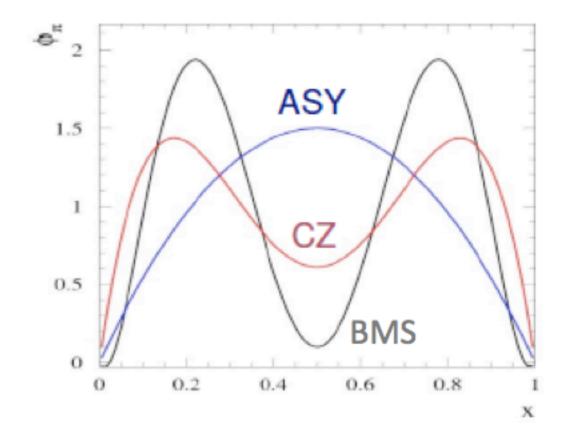
→ kinematiç, fits, including with additional ISR or FSR γ

- measure backgrounds from the data and subtract
 - \rightarrow e+e- \rightarrow qq \rightarrow $\pi^0\pi^+\pi^-$, $\pi^0\mu^+\mu^-$, $\pi^0K^+K^-$: comb γ_{ISR} , other γ
 - → e+e-→γ_{ISR}μ+μ-, γ_{ISR}K+K-: measured simultaneously, taking all cross feed into account

$\gamma \gamma^* \rightarrow \pi^0$ TFF: comparison with theory

$$Q^{2}F(Q^{2}) = \frac{\sqrt{2}f_{\pi}}{3} \int_{0}^{1} \frac{dx}{x} \varphi_{\pi}(x, Q^{2}) + O(\alpha_{s}) + O(\Lambda_{QCD}^{2}/Q^{2})$$

Brodsky, Lepage PLB 87, 359 (1979) Efremov, Radyushkin, PLB 94, 245 (1980)


Expansion of the DA in series of Gegenbauer polynomials:

$$\varphi(x,Q^2) = \varphi_{ASY} \left[1 + \sum_{n \ge 1} a_{2n} (Q^2) C_{2n}^{3/2} (2x - 1) \right]$$

 ϕ_{ASY} = 6x(1-x) is the asymptotic form of the pion DA

Tow of the most commonly used DA shapes:

CZ DA: V.L.Chernyak and A.R.Zhitnitsky, Nucl.Phys. B201, 492 (1982). BMS DA: A.P.Bakulev, S.V.Mikhailov and N.G.Stefanis, Phys.Lett. B508, 279 (2001).

BaBar cross sections with ISR

threshold-3.0 GeV	PRL 103, 231801 (2009)
1.05-3.0 GeV	PRD 70, 072004 (2004)
threshold-4.5 GeV	Preliminary
threshold-4.5 GeV	PRD 71, 052001 (2005)
threshold-4.5 GeV	PRD 76, 092005 (2007)
$\pi^-\pi^0\pi^0$	
threshold-4.5 GeV	PRD 73, 052003 (2006)
threshold-2.6 GeV	PRD 77, 092002 (2008)
threshold-4.5 GeV	submitted to PRD
threshold-4.5 GeV	PRD 76, 092005 (2007)
threshold-4.5 GeV	PRD 73, 012005 (2006)
threshold-3.0 GeV	PRD 76, 092006 (2007)
	1.05-3.0 GeV threshold-4.5 GeV