A standard model explanation of the CDF dijet excess in *Wjj*

Based on Z.S., Arjun Menon, Phys. Rev. D, 83, 091504(R) 2011

Zack Sullivan

Illinois Institute of Technology CTEQ Collaboration

August 9, 2011

Outline

- Introduction: What is the fuss about?
- Re-examining the CDF data
 - Is there really a Gaussian excess?
 - W + 3-jet feed down to W + 2-jets
- Single-top-quark physics enters the picture
 - A curious anomaly in the CDF single-top measurement
 - Adding data derived single-top to Wjj
 - What does DØ data have to say?
- 4 Is the Wjj excess single-top-quark production?
- Conclusions

An article appears...

Science WORLD U.S. N.Y./REGION BUSINESS TECHNOLOGY SCIENCE HEALTH SPORTS OPINION ENVIRONMENT SPACE & COSMOS At Particle Lab, a Tantalizing Glimpse Has Physicists Holding Their Breaths

By DENNIS OVERBYE Published: April 5, 2011

Physicists at the <u>Fermi National Accelerator Laboratory</u> are planning to announce Wednesday that they have found a suspicious bump in their data that could be evidence of a new elementary particle or even, some say, a new force of nature.

RSS Feed

The results, if they hold up, could be a spectacular last hurrah for Fermilab's <u>Tevatron</u>, once the world's most powerful particle accelerator and now slated to go dark forever in September or earlier.

A suggestive plot...

CDF, PRL 106, 171801 (2011)

- Drawing a Gaussian peak guides the eye...
- Is this the discovery everyone's been waiting for?

Speculative new physics explanations proliferate

Higgs, Z', color octets, SUSY, etc.

```
Buckley, Hooper, Kopp, Neil [1103.6035]; Yu [1104.0243]; Eichten, Lane, Martin [1104.0976]; Kilic, Thomas
[1104.1002]; Wang, Wang, Xiao, Xu, Zhu [1104.1161]; Cheung, Song [1104.1375]; He, Ma [1104.1894]; Wang, Wang,
Xiao, Xu, Zhu [1104.1917]; Sato, Shirai, Yonekura [1104.2014]; Nelson, Okui, Roy [1104.2030]; Anchordoqui, Goldberg,
Huang, Lust, Taylor [1104.2302]; Dobrescu, Krnjaic [1104.2893]; Popovic [1104.3111]; Fodor, Holland, Kuti, Nogradi,
Schroeder [1104.3124]; Jung, Pierce, Wells [1104.3139]; Buckley, Fileviez-Perez, Hooper, Neil [1104.3145]; Zhu
[1104.3227]
```

- How about just the Standard Model? Z.S., Arjun Menon, Phys. Rev. D 83, 091504(R) (2011) [1104.3790] Plehn, Takeuchi, J. Phys. G38, 095006 (2011) [1104.4087]
- More Higgs, Z', color octets, SUSY. etc. Ko. Omura, Yu [1104.4066]: Fox, Liu, Tucker-Smith, Weiner [1104.4127]; Jung, Ko, Lee [1104.4443]; Chang, Lee, Song [1104.4560]; Nielsen
 - [1104.4642]; Bhattacherjee, Raychaudhuri [1104.4749]; Cao, Carena, Gori, Menon, Schwaller, Wagner, Wang [1104.4776]; Babu, Frank, Rai 1104.4782; Dutta, Khalil, Mimura, Shafi 1104.5209; Haba, Ohki 1104.5405]; Kim, Shin [1104.5500]; del Aguila, de Blas, Langacker, Perez-Victoria [1104.5512]; Carpenter, Mantry [1104.5528]; Huang [1104.5389]; Sidharth [1105.0277]; Usubov [1105.0969]; Segre, Kayser [1105.1808]; Enkhbat, He, Mimura, Yokoya [1105.2699]; Chen, Chiang, Nomura, Fusheng [1105.2870]; Bettoni, Dalpiaz, Dalpiaz, Fiorini, Masina, Stancari [1105.3661]; Liu, Nath, Peim [1105.4371]; Campbell, Martin, Williams [1105.4594]; Alves, Barreto, Dias [1105.4849]; Hektor, Hutsi, Kadastik, Kannike, Raidal, Straub [1105,5644]; Branco, Ferreira, Lavoura, Rebelo, Sher, Silva [1106,0034]; Hewett, Rizzo [1106,0294]; Fan, Krohn, Langacker, Yavin [1106.1682]; Evans, Feldstein, Klemm, Murayama, Yanagida [1106.1734]; Harnik, Kribs, Martin [1106.2569]; Fok, Kribs [1106.3101]; Gunion [1106.3308]; Faraggi, Mehta [1106.5422]; White [1106.5662]; Eshel, Lee, Perez, Soreg [1106.6218]; Ghosh, Maity, Roy [1107.0649]; Graesser, Shoemaker, Vecchi [1107.2666]; Vecchi [1107.2933]; Eichten, Lane, Martin [1107.4075]; Anchordoqui, Antoniadis, Goldberg, Huang, Lust, Taylor [1107.4309]; + a few I've probably missed. . .

Outline

- Introduction: What is the fuss about?
- Re-examining the CDF data
 - Is there really a Gaussian excess?
 - W + 3-jet feed down to W + 2-jets
- 3 Single-top-quark physics enters the picture
 - A curious anomaly in the CDF single-top measurement
 - Adding data derived single-top to Wjj
 - What does DØ data have to say?
- 4 Is the Wjj excess single-top-quark production?
- Conclusions

A less biased view of the Wij data

CDF "bkg sub" data (without the Gaussian)

Fully background subtracted (a clearer picture)

- There is a clear systematic shape problem across 28–300 GeV, not just 120-160 GeV
 - The systematic deficit below WW threshold is most worrisome
 - The systematic excess is everywhere above WW threshold
- It appears a broad kinematic background is missing...

Re-examining the CDF fit

ullet The original analysis was designed to measure WW/WZ

CDF fit

- Normalizations were floated for
 - dibosons (WW/WZ)
 - "Wjj" (Wjj + Zjj + top + QCD)
 - More specifically, the ratio of $t\bar{t}$ to Wjj was fit to data
 - The proportion of single-top was fixed via Monte Carlo

Re-examining the CDF fit

ullet The original analysis was designed to measure WW/WZ

- Normalizations were floated for
 - dibosons (WW/WZ)
 - "Wjj" (Wjj + Zjj + top + QCD)

- Extracting the data and CDF fit we found $\chi^2/\mathrm{d.o.f.} = 44.5/19$ not surprising
- Distribution of errors

- The errors do not follow a Gaussian distribution: skew confirms shape problem
- ullet More specifically, the ratio of tar t to $W\!j\!j$ was fit to data
- The proportion of single-top was fixed via Monte Carlo

Loosening the cuts (a subtle hint)

- CDF has examined several alternate cuts
- Overlaying two of the data sets appears to point to a clear problem: there are more events above 104 GeV with tight cuts than loose cuts!

Loosening the cuts (a subtle hint)

- CDF has examined several alternate cuts
- Overlaying two of the data sets appears to point to a clear problem: there are more events above 104 GeV with tight cuts than loose cuts!

- It is only a partial overlap these are samples of exclusive jets the weaker jet veto with $E_{Tj}>30$ is allowing 3-jet events to sneak into the 2-jet sample
- Conclusion: Some of the excess is due to Wjjj contamination

Outline

- Introduction: What is the fuss about?
- Re-examining the CDF data
 - Is there really a Gaussian excess?
 - W + 3-jet feed down to W + 2-jets
- 3 Single-top-quark physics enters the picture
 - A curious anomaly in the CDF single-top measurement
 - Adding data derived single-top to Wjj
 - What does DØ data have to say?
- 4 Is the Wjj excess single-top-quark production?
- Conclusions

Single-top at CDF: a stranger anomaly

- Single-top-quark production is also a Wjj measurement
- CDF measurement

CDF, PRD 82, 112005 (2010)

• *t*-channel: mostly 1 *b*-tag

• s-channel: mostly 2 b-tags

 Some mixing occurs, confusing the channels

- CDF observes far too few 1 b-tag events, far too many 2 b-tag events
- ullet This translates to $\sim 1/2$ expected t-channel, $\sim 3 imes$ expected s-channel
- The sum of t-channel and s-channel is about right. . .

Extracting contribution to *Wjj/Wjjj* from the CDF single-top measurement

- We extract t-/s-channel for Wjj/Wjjj using:
 - The same trigger as Wjj analysis (TLC)
 - Exclusive 2-/3-jet predictions from Z.S., PRD 70, 114012 (2004)
 - $\sim 50\% \ b$ -tagging rate
- *K*-factors by final state (large experimental errors):

Process	Wbj	Wbb	Wbjj	Wbbj
t-chan.	$0.6^{+0.3}_{-0.2}$	$0.4^{+0.2}_{-0.2}$	$0.9^{+0.8}_{-0.7}$	$2.0^{+1.5}_{-1.3}$
<i>s</i> -chan.	$0.5^{+0.\overline{2}}_{-0.1}$	$3.8^{+2.1}_{-1.7}$	$0.6^{+0.5}_{-0.4}$	$2.0_{-1.3}$ $2.7_{-1.8}^{+2.1}$

- There is a large downward fluctuation of *t*-channel in the 2-jet sample (almost cancelled by the upward fluctuation in the 3-jet sample)
- s-channel has a large upward fluctuation in CDF data
- Jets defined as $E_{Tj} > 20$ GeV in this data both 2/3-jet samples here will contribute to Wjj when jet veto is tightened

Why would we expect single-top to help?

- Events with top quarks naturally have kinematic peaks between 100-140 GeV.
 - $E_b \sim 70$ GeV in top frame, $E_{Ti} > 30$ GeV cut is applied
 - Generically induces a peak in $M_{ii} \gtrsim 100 \text{ GeV}$

- The M_{ii} shapes of s-/t-channel modes, and 2/3-jets are the same!
- Let's see what data-derived top does to the M_{ii} fit in W_{jj} ...

Using CDF data-derived single-top in Wjj fit

• Minimal χ^2 fit

- Best fit at 0.5σ excess $1.4 \times \text{data-derived single-top}$
- We find $\chi^2/\text{d.o.f.} = 26.0/26$ using $c = 1.0 \times \text{data-derived}$ single-top
 - ullet a imes Wjj $_r$ all backgrounds except dibosons and single-top ($a_{
 m best}$ = 0.91)
 - $b \times VV WW/WZ$ dibosons ($b_{\text{best}} = 0.91$)
 - $c \times \text{single-top}$ where we add $0.6 \times t_2 + 2 \times t_3 + 3.8 \times s_2 + 2.7 \times s_3$

Using CDF data-derived single-top in Wjj fit

• Minimal χ^2 fit

• Best fit at 0.5σ excess $1.4 \times {\rm data\text{-}derived}$ single-top

- Comparison of fits using:
 - single top from Monte Carlo (CDF fit)
 - single top from data (our New fit)

- We find $\chi^2/\mathrm{d.o.f.}=26.0/26$ using c=1.0 imesdata-derived single-top
 - ullet a imes Wjj_r all backgrounds except dibosons and single-top ($a_{
 m best}$ = 0.91)
 - $b \times VV WW/WZ$ dibosons ($b_{\text{best}} = 0.91$)
 - $c \times \text{single-top}$ where we add $0.6 \times t_2 + 2 \times t_3 + 3.8 \times s_2 + 2.7 \times s_3$
- Conclusion: Single-top excess completely explains Wjj excess

Residual shape and size dependencies disappear

Fully background subtracted

Line: Old CDF residuals Error bars: New fit residuals Distribution of errors

- Textbook sampling of Gaussian
- Conclusion: There is no remaining statistical deviation from a perfect fit to background.

Comparison to DØ data

- In PRD 83, 091504 (2011) we predicted DØ would see at most a small excess in Wjj
 - This was based on earlier DØ data (PRD 82, 112005), which found $1.28 \times t$ -channel, $0.94 \times s$ -channel
- DØ has since measured *Wjj* in PRL 107, 011804 (2011):

- The $\chi^2/\text{d.o.f.}$ does improve slightly with data-derived single-top
- There is no statistically significant excess in the DØ Wjj data
- Conclusion: Wjj/single-top discrepancies are an artifact of CDF data

Outline

- Introduction: What is the fuss about?
- Re-examining the CDF data
 - Is there really a Gaussian excess?
 - W + 3-jet feed down to W + 2-jets
- 3 Single-top-quark physics enters the picture
 - A curious anomaly in the CDF single-top measurement
 - Adding data derived single-top to Wjj
 - What does DØ data have to say?
- 4 Is the Wjj excess single-top-quark production?
- Conclusions

Is the Wjj excess single top?

- We have demonstrated the shape and normalization of the CDF anomaly in Wjj are completely consistent with the CDF measurement of single-top quark production.
- We focused on single-top because CDF claimed to fit $t\bar{t}$ to data.
- Mismodeling of $t\bar{t}$ could be playing a role as well

- $b\bar{b}$ from $t\bar{t}$ has a similar shape to s-channel
- bj from $t\bar{t}$ (with j (or τ) from W decay) is more peaked
- ullet There is not enough information to determine the contribution of $tar{t}$
- Conclusion: The solution probably involves all top production modes.

Conclusions

- There are actually 2 anomalies in CDF data:
 - There is a systematic shape problem in Wjj
 - There are factor 2-3 discrepancies in early single-top data

There is a large excess of W+0 b-tag, W+2 b-tag events There is a large deficit of W+1 b-tag events

- The Wjj anomaly is completely explainable in normalization and shape as the same upward fluctuation as is observed in single-top
 - CDF will have to address both problems at once
- As there is no excess in DØ, this is limited to CDF
- Wjj was seen as an anomaly because Monte Carlo was used to predict backgrounds instead of data
 - ullet Remember, single-top is a dangerous background to $W\!H o Wbar{b}$ and some SUSY channels

THANK YOU

