

ATLAS Analysis Data Distribution and Panda PD2P

Alden Stradling, Kaushik De, Tadashi Maeno, Torre Wenaus, Paul Nilsson

> 12 August 2011 DPF, Brown University

Once upon a time...

- There was the concept of an ideal Grid. These were indeed the best of times.
 - Bandwidth was infinite, authentication reliable, and execution was swift!
 - Data moved swiftly to wherever the battle was thickest, keeping efficiency high.
- Then came implementation.

It so happened

- That the data started to get... big.
- This was, of course, anticipated. For production jobs, data movement time was (correctly) deemed relatively short, and data could easily be sent to the jobs.
- Trying the same thing with user analysis didn't work.
 - Users (ideally) need *instant*. start, and quick results. Lots of time wasted in slow debug cycles, otherwise.
 - Moving a terabyte or more is not "instant" at all.

Monarchy

• Decreeing by policy that *n* copies of certain data types will be replicated based on the site's tier and etc...

- Again, great for centrally-run jobs!
- Creates terrible bottlenecks in user analysis.

Growing Pains

- So we broker the job to the data
 - Unless the sites that have the data are swamped! What then?
- Make the data as widespread as possible
 - But most of the data are unused (shown on next slide)
 - Sites clog quickly, and user jobs are still delayed
 - And this is just the very beginning of LHC data

Small Fraction Used

Rising Tide

- Exponential rise between February and June 2010
- Unsustainable! (just the beginning of data collection)

PD2P to the Rescue!

- Panda Dynamic Data Placement (PD2P)
- June 2010, put initial algorithm into play in the US cloud as a test as the *reverse* of the Monarch Model
 - When a dataset is used (even once), it is subscribed to a Tierz site
 - Greater demand, more subscriptions
 - Unpopularity determines cleanup
 - Exclude heavier data in favor of user analysis types (Analysis Object Data, ntuple, even Event Summary Data)
 - User-created datasets are left out of the algorithm.

Distributed Analysis

Initial Results (Oct 2010)

- Very encouraging. Plateau in data growth.
- In spite of rapid lumi growth and constant user analysis

Up Until Today...

- The plateau continues, with dips in some places
- User analysis, as seen above, is huge. So is lumi.

Initial Behavior

- Steady rate of subscriptions (no big spikes)
- Site distribution is fairly even
- LHC data are (of course) more often subscribed and reused than Monte Carlo

How Much Reuse?

Ti Sites – Another Crisis

• With the Tierz peril newly overcome, the Tierz data become... unruly

UT ARLINGTON IN

PD2P To The Rescue!

- Distributes differently according to MoU share, and then popularity
 - Logarithmic new copies every 10th/100th/1,000th/1000th

How Much Load?

- We've moved to all clouds on PD2P for Tier2
- The transition has been transparent to users.
 - No complaints on the help lists
 - No delays noticed (meaning that there are no delays that exceed other slowdowns)
- The transition has been a boon for the site admins and deletion services operators

And So It Happened...

- That the situation once again became manageable!
 - Storage stayed reasonable
 - Small tweaks to the algorithm improved the situation incrementally even more
 - All the T1 sites were added to PD2P
- Jobs that had languished with excessive delays could be **rebrokered**, for the data would be moved as well (since there was already a delay)

Rebrokerage

- And so 300,000 jobs that waited to start for more than 72 hours were sent to a new site
- It was decreed that 72 hours was too long, and the delay was decreased to a single day
- And the rebrokerage rate leapt fivefold! (5x)
- But the dreaded "bouncing job" never came about, nor was PD2P flooded with data.

Job Hopping

one 72h hop!)

And They Lived Happily...

- Of course not. Much to do to make data management "smart"
 - Widen the gates and let more copies be made to Tr sites. Do some pre-placement.
 - Make more T2 copies of popular datasets
- Attempt to copy only the parts of the dataset that will be used in the job
- Possibly find patterns in use, and make predictive copies of datasets likely to be popular?

Ever After...

- The Ideal Grid, where Data speed to where they're needed, allowing transfers of individual files (or even events!)
- Or where data are read directly over Federated Xrootd, from any site to any site.
- Final abolition of all "cloud" boundaries, and have access to all data from any site, from the least to the greatest.

The End

Backup Slides

What Kinds of Data?

Last Week

UT ARLINGTON.

