

Measurement of Single-Top Quark Production with the ATLAS Detector

Jenny Holzbauer
On Behalf of the ATLAS Collaboration
DPF Meeting, August 10, 2011

ATLAS-CONF-2011-101 and ATLAS-CONF-2011-104

Historical Overview

- Single-top, electroweak top quark production, first observed at Fermilab in 2009 by D0, CDF¹
 - Just this year, t-channel production observed at Tevatron by D0²
 - This was followed shortly at the LHC with t-channel evidence by CMS³ and observation by ATLAS⁴
 - ATLAS has also set first limits on Wt⁵
 - Very exciting time for single-top!
- Reporting updated ATLAS t-channel measurement and Wt limit
 - 1. D0 Collaboration: Phys.Rev.Lett.103:092001, 2009 CDF collaboration: Phys.Rev.Lett.103:092002, 2009
 - 2. D0 Collaboration: arXiv:1105.2788v1, submitted to Phys. Lett. B, May 2011
 - 3. CMS collaboration: arXiv:1106.3052v1, accepted to Phys. Rev. Lett.
 - 4. ATLAS collaboration: ATLAS-CONF-2011-088
 - 5. ATLAS collaboration: ATLAS-CONF-2011-027

Motivation

- At the LHC, t-channel single-top crosssection is about 30 times larger than at the Tevatron
 - Will allow more precise t-channel measurements and a detailed study of this process
- Single-top is sensitive to any new process that can modify the Wtb coupling (W', FCNC, H[±], etc.)
- Can test of the b-quark structure function
- Wt single-top production cannot be seen at Tevatron, want to look for it at the LHC

ATLAS at CERN

7 TeV center of mass energy

0.70 fb⁻¹ used in analyses shown today

t-channel Event Selection

- Analysis shown uses straightforward cut-based strategy
 - Neural network also performed
- t-channel selection to isolate signal-like events:
 - 2 (or 3) jets, $p_{T} > 25 \text{ GeV}$
 - 1 jet is b-tagged, 50% efficiency (secondary vertex b-tagger)
 - Exactly 1 isolated triggered muon or electron with $p_{\scriptscriptstyle T} > 25$ GeV and $|\eta| < 2.5$
 - E_T miss > 25 GeV
 - E_T^{miss} + W_T mass > 60 GeV
- S/B is 0.1 after selections

t-channel σ_{sm} =65 pb

t-channel Backgrounds

- W+jets is dominant background due to misidentification of c-quarks as b-quarks
- tt (lepton + jets), multijet are also large
 - Z+jets, diboson, Wt and s-channel are much smaller backgrounds
- W+jets normalization and flavor fractions, multijet shape and normalization from data
 - Other processes use theory cross-sections

Data-based Background Determination

- Multijet shape and normalization determined via a "jet-lepton" method
 - Require jet trigger in place of lepton trigger, veto real leptons
 - Binned maximum likelihood fit to E_T^{miss} distribution in data
- W+jets normalization and heavy flavor composition:
 - Algebraic solution of equations using three off-signal regions for cut based analysis
 - Fit to the output distribution for neural network analysis

Discriminating Variables

Good agreement between Data and Monte Carlo

Cut-based Analysis

Sandidate Events

- Four channels, + or lepton charge each with 2 or 3 jet events
 - Expect asymmetry (protons, uud)
- Extra analysis cuts:
 - Untagged jet $|\eta| > 2.0$
 - |Δη(b-jet, untag jet)| > 1.0
 - H_T(jet₁, jet₂, lep., E_T^{miss}) > 210 GeV
 - 140 GeV < top mass < 190 GeV

ATLAS Preliminary	Cut-based 2-jet		Cut-based 3-jet	
	Lepton+	Lepton-	Lepton+	Lepton-
single-top <i>t</i> -channel	51.8 ± 16.4	23.7 ± 6.5	33.0 ± 7.0	16.3 ± 4.8
TOTAL Expected	94.1 ± 18.4	50.2 ± 8.5	82.6 ± 12.7	57.9 ± 10.1
S/B	1.23	0.89	0.67	0.39
DATA	118	68	74	60

Neural Network Analysis

- Combine many variables including their correlations into a discriminant
 - NeuroBayes program with 13 variables, including cut-based analysis variables
- Extract cross section with a binned likelihood fit to the full NN output distribution
 - No additional cuts

t-channel Cross-section Measurement

- Profile likelihood determines observed cross-section for cut based (CB), maximum likelihood fit determines this for neural network (NN):
 - NN 2 jets: $\sigma_t = 105 \pm 7 \, (\text{stat})_{-30}^{+36} \, (\text{syst}) = 105_{-31}^{+37} \, \text{pb} \, (ATLAS \, \text{Preliminary})$
 - **CB 2 jets:** $\sigma_t = 102^{+12}_{-11}(\text{stat})^{+38}_{-27}(\text{syst}) = 102^{+40}_{-30} \text{ pb } \left(\textbf{ATLAS} \text{ Preliminary}\right)$
 - **CB 3 jets:** $\sigma_t = 50^{+15}_{-14}(\text{stat})^{+30}_{-22}(\text{syst}) = 50^{+34}_{-27} \text{ pb}$ (**ATLAS** Preliminary)
- NN and CB 2 jet results, and CB 2 and 3 jet results are consistent
- Final result is cut based 2 and 3 jet combination, observed (expected):

ATLAS Preliminary

$$\sigma_t = 90^{+9}_{-9}(\text{stat})^{+31}_{-20}(\text{syst}) = 90^{+32}_{-22} \text{ pb } (65^{+28}_{-19} \text{ pb})$$

t-channel Cross-section Measurement

- Now dominated by systematic uncertainties
 - b-tagging, jet energy scale, and initial/final state radiation uncertainties are particularly large

ATLAS Preliminary	$\Delta\sigma/\sigma$ [%]	
Source	cut-based	NN
	combined	
Data statistics	± 13	± 10
MC statistics	± 6	± 7
Jet energy scale	+9/-1	+32/-20
b-tagging scale factor	+18/-13	± 13
Generator	+11/-9	± 7
Parton shower	+10/-9	± 6
ISR/FSR	± 14	± 13
Jet η reweighting	+13/-11	+10/-6
Luminosity	+7/-6	± 5
All systematics	+41/-27	+44/-34
Total	+44/-30	+45/-34

*Cut-based result is 2 and 3 jet combination

Wt-channel Event Selection

• General selection:

- Select jets with p_T > 30 GeV
- Exactly 2 isolated triggered muons or electrons with p_T
 > 25 GeV and |η| < 2.5
- E_T miss > 50 GeV
- Z to TT veto:

$$\Delta\Phi(I_1, E_T^{\text{miss}}) + \Delta\Phi(I_2, E_t^{\text{miss}}) > 2.5$$

- Z-mass veto (ee/mm only): $|M(I_1I_2)-M(Z)| > 10 \text{ GeV}$
- Cut based signal region:
 - Exactly 1 jet

Analysis channels:

Electron-electron (ee)

Electron-muon (em)

Muon-muon (mm)

Wt-channel Backgrounds

- tt (dilepton) is dominant background due to two real leptons, real tops, and jet misreconstruction
- Fake lepton (Multijet and W+jets), Drell Yan,
 Z to ττ and diboson also large
- All backgrounds have data driven estimations except diboson, for which the theoretical cross-section is used

Data-based Fake Lepton and Drell Yan Determination

- "ABCDEF" method is used to determine Drell Yan
 - Two uncorrelated variables, dilepton mass and E_t^{miss}
 - Use off-signal regions to estimate Drell Yan in signal (A,C) region
 - Non-Drell Yan in off-signal region is subtracted, correlations between two variables corrected
- Matrix method used to estimate fake lepton (multijet and W+jets) backgrounds
 - Four by four matrix with different lepton definitions for the lepton pair

$$N_{A/C}^{predicted} = N_{D/F}^{data} \times (N_B^{data}/N_E^{data})$$

Data-based tt and Z to ττ Determination

- tt̄ estimated using ≥2 jets sample
 - Non-tt subtracted from the data in this region and comparing this value to the expected one
 - Result propagated to 1 jet signal region
 - Systematic uncertainties also estimated separately and correlations accounted for
- Z to $\tau\tau$ estimated using $\Delta\Phi(I_1, E_{\tau}^{miss}) + \Delta\Phi(I_2, E_{\tau}^{miss}) < 2.5$ sample
 - Non-Z to TT subtracted from data in this region and result propagated to 1 jet signal region

Wt Analysis

- Dilepton analysis with three channels (ee, eμ, and μμ)
 - Cut-based approach, requires extra cut of exactly 1 jet
 - Good agreement with expectation in signal region

Wt Result

Profile likelihood ratio curve used to determine cross-section and limit

- $\sigma_{Wt} = 14.4^{+5.3}_{-5.1}(\text{stat})^{+9.7}_{-9.4}(\text{syst}) \, \text{pb} \, \left(\textbf{ATLAS} \, \text{Preliminary} \right)$ observed
- At 95% confidence level, observed (expected) limit is

 $\sigma_{Wt} < 39.1 \text{ pb } (40.6 \text{ pb}) \text{ } (ATLAS \text{ Preliminary})$

Expected Uncertainties

Source ATLAS Preliminary	$\Delta\sigma/\sigma$ [%]			
Data statistics	+37/-35			
MC statistics	+11/-5.4			
Lepton energy scale	+7.0/-5.4			
Lepton energy resolution	+9.0/-8.9			
Lepton efficiencies	+5.3/-2.9			
Jet energy scale	+34/-35			
Jet energy resolution	+29/-32			
Jet reconstruction efficiency	+30/-33			
Top pair scaling factor	+23/-24			
Drell-Yan background estimation	+2.7/-4.0			
Fake lepton background estimation	+4.2/-4.3			
Generator	+16/-11			
ISR/FSR	+6.0/-1.9			
PDF	+5.4/-2.8			
Pileup	+10/-6.6			
Background cross-sections	+6.9/-6.8			
Luminosity	+9.2/-5.9			
All systematics	+68/-66			
Total	+77 / -75			

Summary

- ATLAS single-top results reported for 7 TeV protonproton collisions at the LHC with 0.70 fb⁻¹ of data
- Measurement of t-channel cross-section of
 - $\sigma_t = 90^{+32}_{-22}$ pb (*ATLAS* Preliminary), consistent with the standard model
- 95% confidence level limit set for Wt of

$$\sigma_{Wt} < 39.1 \text{ pb } (ATLAS \text{ Preliminary})$$

Corresponds to cross-section of

$$\sigma_{Wt} = 14.4^{+5.3}_{-5.1}(\text{stat})^{+9.7}_{-9.4}(\text{syst}) \, \text{pb} \, \left(\text{ATLAS} \, \text{Preliminary} \right)$$

 Looking forward to improving the results with the increasing integrated luminosity this year

Other Material

Reconstructed Top Quark Mass

- Top mass variable is one of two final cut-based analysis variables
 - Reconstructed top quark formed from the reconstructed W (lepton plus reconstructed neutrino) and the btagged jet
 - To reconstruct the neutrino, need to determine the neutrino Pz
 - Assume the mass of the W boson to be 80.42 GeV
 - In the calculation of neutrino Pz there are two solutions and the lowest Pz is chosen
 - If there is a negative discriminant (1+(MET²*leptonpz²) < MET²*leptonE²), a null value is taken for this in the calculation

Additional Discriminating Variables (t-channel)

Wt process Ht(jets) for Event Selection and ≥2 jets

 General event selection at left, this plus at least two jets at right for Wt analysis

