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Randall-Sundrum Model
• In the Randall-Sundrum 

model gravity propagates in 
a warped extra dimension 
with two fixed points

• The Standard Model fields 
are constrained to one 
brane 

• The gravity wave function 
is concentrated near the 
other brane, falling off 
exponentially across the 
extra dimension
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Figure 4: The generation of an exponential hierarchy.

This term corresponds to the 4D action, so that we can read off the value

of the effective 4D Planck mass:

M2
Pl = (1− e−2kL

)M3/k.

We see that it weakly depends on the size of the extra dimension L, provided

kL is moderately large.

Putting our two last results together, we see that the weak scale is ex-

ponentially suppressed along the extra dimension, while the gravity scale is

mostly independent of it (see fig.4).

In conclusion, in a theory where the values of all the bare parameters

(M,Λ,λ1, v) are determined by the Planck scale, an exponential hierarchy

can be naturally generated between the weak and the gravity scales. Thus

the Randall-Sundrum model provides an original solution to the Hierarchy

Problem.

Remarkably, the effective Planck mass remains finite even if we take the

decompactification limit L→∞. This case where there is only one brane is

known as the Randall-Sundrum II model (RS2). The fact that there could

be an infinite extra dimension and still a 4D gravity as we experience it

results from the localization of gravity around the brane at y = 0, which we

now turn our attention to.
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Integrating over y gets us the expression for A:

A(y) = ±ky.

As we want a solution that respects the orbifold symmetry, i.e. invariance

under the transformation y → −y, we choose

A(y) = k|y|.

Finally, the background metric in the Randall-Sundrum model is paramet-

rized by

ds2
= e−2k|y|ηµνdxµdxν

+ dy2, (5)

with −L ≤ y ≤ L.

Let us look now at the µν component of the 5D Einstein equations.

Appendix A gives

Gµν = (6A�2 − 3A��
)gµν .

From the solution we just found for A we see that the first derivative of A
is

A�
= sgn(y)k.

The term sgn(y) may be written as a combination of Heaviside functions as

sgn(y) = θ(y)− θ(−y),

so the second derivative is

A��
= 2kδ(y).

This delta function arose from the kink of A at the origin y = 0 (cf. fig. 3).

In the same way, the kink at y = L gives rise to another delta function, and

the complete expression for A��
is

A��
= 2k

�
δ(y)− δ(y − L)

�
.

Plugging those results into the expression of the Einstein tensor gives

Gµν = 6k2gµν − 6k
�
δ(y)− δ(y − L)

�
gµν .

The first term is equal to the µν components of the energy-momentum tensor

multiplied by the 5D Newton constant:

κ2Tµν =
−Λ

2M3
gµν = 6k2gµν .
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Randall-Sundrum Gravitons

• The model predicts a 
tower of Kaluza-Klein 
graviton states with TeV 
scale masses

• A range of couplings 
between these gravitons 
and SM particles are 
possible:
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Figure 7: Individual resonances of the Randall-Sundrum gravitons.

SG given by equations (1) and (6), and a part accounting for the interactions
between matter and gravity:

S = SG +
�

d4xdy
√
−gLM (Φ, gMN ),

where Φ stands for the fields residing on the branes.
For small graviton perturbations around the background metric

gMN = e−2AηMN → g�MN = e−2A(ηMN + hMN ),

we expand the matter Lagrangian in Taylor series up to first order:

LM (Φ, g�MN ) = LM (Φ, gMN ) + hµν
δLM

δg�µν

�

g�
µν=gµν

+O(h2).

Using the definition (3) of the energy-momentum tensor,

Tµν =
−2
√
−g

δ
√
−gLM

δgµν

�

g�
µν=gµν

= −LMgµν
− 2

δLM

δgµν

�

g�
µν=gµν

,

and the formula
�

det(ηµν + hµν) = 1 + h/2 + O(h2) with h = gµνhµν , we

19

• values of k/Mpl between 0.01 and 0.1 are favored

• The values of the mass of the lowest KK excitation and the coupling
       fully specify the model

arXiv:hep-ph/9909255v1
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G → γγ

• EM objects offer a clean experimental signature 
with excellent mass resolution

• RS gravitons have twice the branching ratio to 
decay to photons as to electrons 

• In the diphoton channel, there is less background 
because the Drell-Yan process (Z/γ* → ll), which 
dominates in the dilepton channel, is not present
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Identifying Photons

• The ATLAS detector has a finely 
segmented electromagnetic 
calorimeter which allows for good 
separation between real photons 
and hadrons, such as π0s

• For eta < 2.5, the EM calorimeter is 
segmented into three layers:
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• The middle layer provides the bulk of the energy resolution and provides 
loose discrimination based on shower width

• The front layer is more finely segmented, providing tighter rejection of 
hadrons
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2010 G → γγ Search

• 36 /pb of data were 
examined 

• Photons with more 
than 20 GeV of 
transverse energy 
were selected
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• They were additionally required to pass loose selection of 
cuts to reduce the background from hadronic fakes, 
including narrowness in the middle layer of the calorimeter 
and low hadronic leakage

Mγγ:679 GeV
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Background Estimation
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• In the 2010 analysis, the background was simply modeled 
using two exponentials fit to a control region with Mγγ 
between 120 and 500 GeV

• As our understanding of the background improves we can 
build a more descriptive background model
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Background Decomposition
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• Standard Model Diphoton:

• Gamma-Jet and Dijet: (with hadrons faking photons)

• Drell-Yan: (with electrons faking photons)

etc.

etc.
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Gamma-Jet / Jet-Jet

Various control samples in data show us that the 
mass shapes of gamma-jet and jet-jet are quite 
similar
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2011 Data: Control Region

ATLAS work in 
progress

• SM Diphoton: DIPHOX

• qcd+gammajet: data driven

• Drell-Yan: MC

• The SM Diphoton contribution is fixed

• The normalizations of the QCD and DY are allowed to float

2011 Data 

1.07 /fb

Fitting the Drell-Yan and gamma-jet contributions

Tighter shower shape cuts 
and calo isolation < 5 GeV  
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Diphoton Invariant Mass [GeV]
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Signal Parameterization
• To cover a wider range of potential signal points, we 

fit the MC to parameterize our signal

• To separate the effect of the intrinsic width (which 
is a function of the coupling) from the detector 
response, we fit the reconstructed minus truth 
mass
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ATLAS 
work in 
progress

Double Sided
Crystal Ball

Function

simulation

M = 1.25 TeV
k/Mpl = 0.05
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• Mass resolution is approximately 1% for high masses 
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Final Signal Template

After convoluting our parameterization of the detector 
response with the appropriate Breit-Wigner, we get 
templates which are consistent with our original MC
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2010 Analysis Results

ATLAS-CONF-2011-044

2010 Data
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Limits from a modified frequentist approach, where CLs is defined as CLs = CLs+b/CLb 
with CLs+b = P(LLR ≥ LLRobs|s + b) and CLb = P(LLR ≥ LLRobs|b)

ATL-CONF-2011-044

2010 Analysis Results
2010 Data
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G → γγ, G →ee

• The G → γγ and G → ee channels are quite 
similar, in terms of both physics and detector 
response

• No 2011 photon result is ready to be shown, but 
the 2011 electron result is quite relevant
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• 1/fb Graviton search

• Full analysis 
presented by D. 
Olivito in the 
previous talk
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2011 Data 

k/Mpl = 0.1
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We should be able to do significantly better once we 
add the diphoton channel

The Power of 1.08 /fb

2011 Data 
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• Using the 2011 dataset, we have an 
improved understanding of the background 
in the gamma gamma final state

• We have a consistent signal 
parameterization which allows us to set 
limits on a wide range of masses and 
couplings

• Looking forward to seeing more data!
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Summary


