

Top quark results using CMS data at 7 TeV

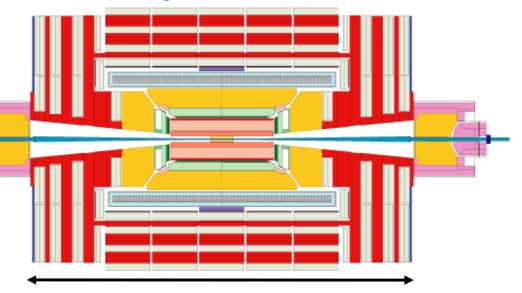
Karl M. Ecklund
Rice University
on behalf of the
CMS Collaboration

Compact Muon Solenoid

Transverse Slice

General Purpose Detector

- Precision Silicon Tracking
- EM Calorimeter
- Hadron Calorimeter
- 3.8 T Magnetic Field
- Muon Detectors

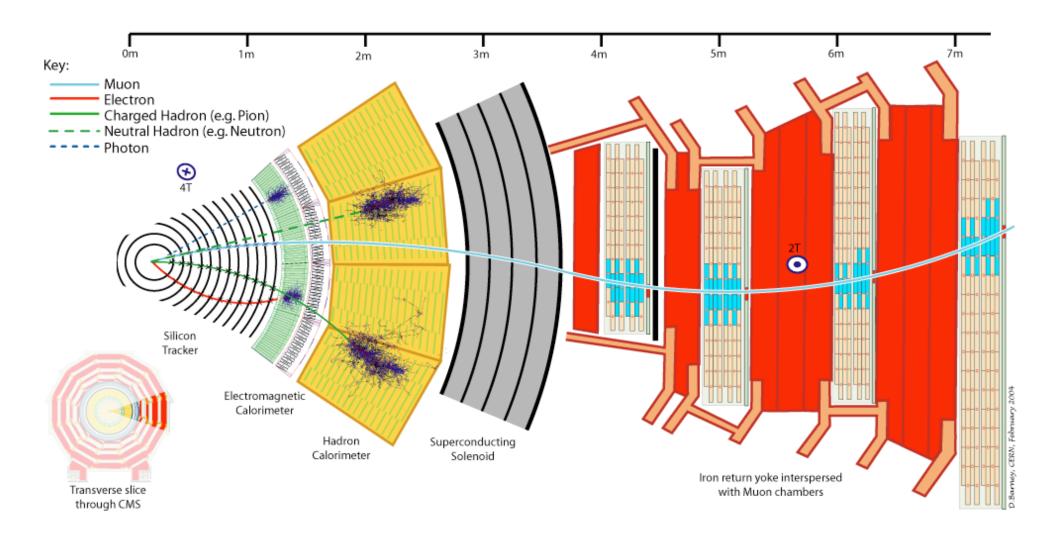

JINST 3 08004 (2008)

For Top: b-tag 2nd vertex Electrons

Missing Energy Muons

Integrated
Particle Flow
Reconstruction

Longitudinal Slice

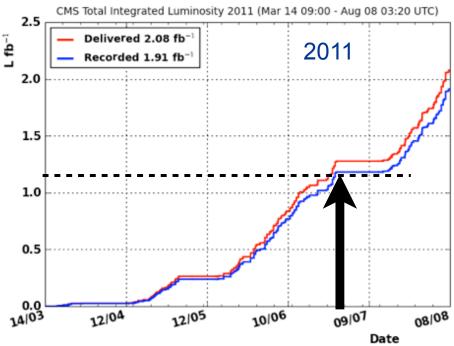

15 m

21 m

Transverse slice through CMS



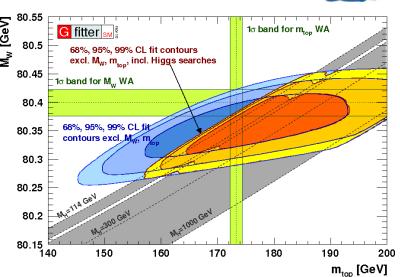
CMS Data Samples



2010 Dataset 36 pb⁻¹ for Top Analysis (good: calorimeters, muon, tracking)

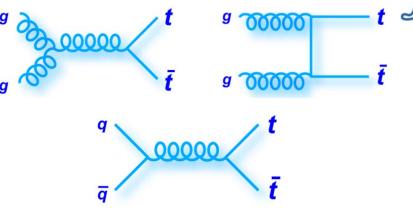
2011 Dataset

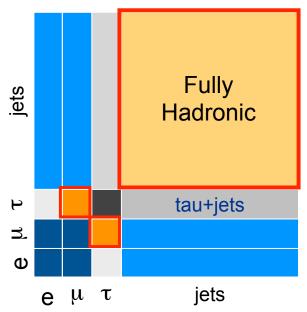
~1.0 fb⁻¹ for Top Analysis available for EPS/DPF Doubled again since restart of LHC Physics Today Peak luminosity > 2 ×10³³ cm⁻² s⁻¹ Challenges for triggering on top samples



Motivation for Top Physics @ LHC

- Top is heavy
 - large Yukawa perhaps a role in EWSB
 - loop corrections to Higgs mass (m_t²)
- Precision measurements using top quarks
 - top production and decay
 - top properties can be probed for BSM physics
 - even if indirect, may be important confirmation of other discoveries!
 - LHC is a top factory large samples available
 - 160 pb \times 1000 pb⁻¹ = 160 k t tbar pairs produced
 - · kinematic reach beyond the Tevatron
- New Physics
- preferential coupling to top?
- new particles decaying to top (Z', 4th generation, ...)
- new physics can modify top couplings

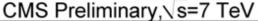


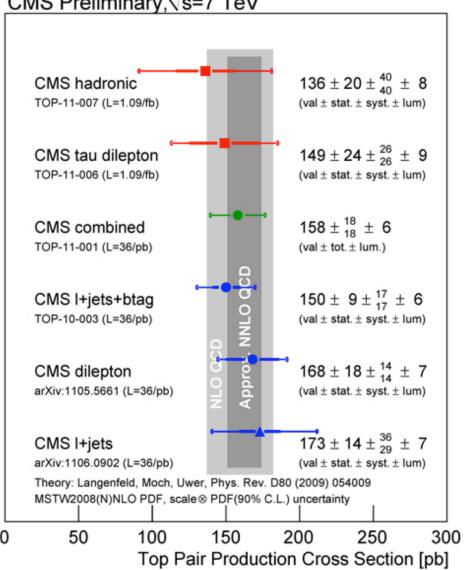


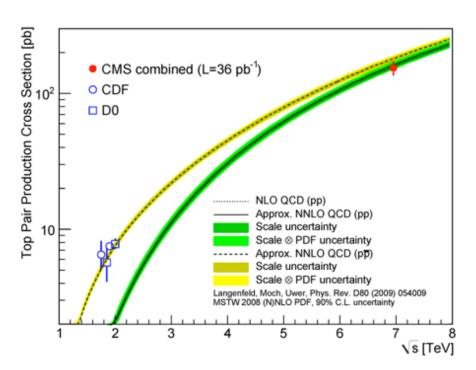
Top Pair Cross Section Measurements

- SM Production
 - gluon fusion ~85% LHC
 - qq annihilation ~15% LHC
- SM cross sections
 - \circ ONNLO=163⁺¹¹-10 pb Kidonakis PRD 82 114030 (2010)
 - ONNLO=164⁺¹⁰-13 pb
 Langenfeld et al. PRD 80 054009 (2009)
 Aliev et al. CPC 182, 1034 (2011)
- SM Decay
 - Expect ~100% t→Wb (IV_{tb}I~1)
 - tt channels characterized by W decays
 - dilepton: tt→W+bW-b→ℓ+vbℓ-vb
 - lepton+jets: tt→ℓvbqiqjb
 - fully hadronic: tt→qiqibqkqlb

2010 Results (36/pb): dilepton, lepton+jets New Results (1.09/fb): Fully hadronic, μτ

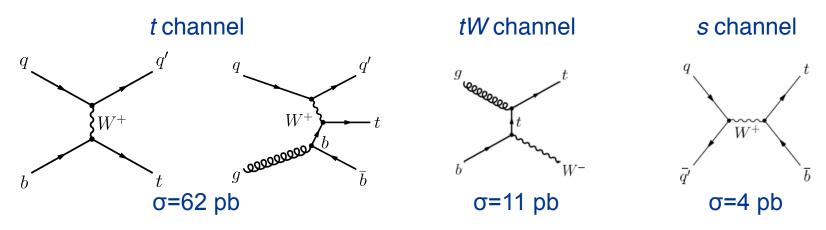



See S. Khalil talk for details (5pm)



Cross Section Summary

- Good agreement in varied channels
- Good agreement with **NLO** calculations


See S. Khalil talk for details (5pm)

Single Top Production

Standard Model Production

- Probes New Physics through top couplings
 - non-SM production or decay
- Single top discovered at the Tevatron
- CMS Search for t-channel at 7 TeV
 - large cross section with distinctive signature
 - two searches with 2010 data (36/pb)

arXiv 1106.3052 CMS-PAS-TOP-10-008

See T. Speer talk for details 10 Aug

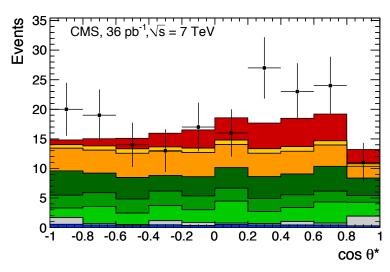
CMS Single Top t-channel

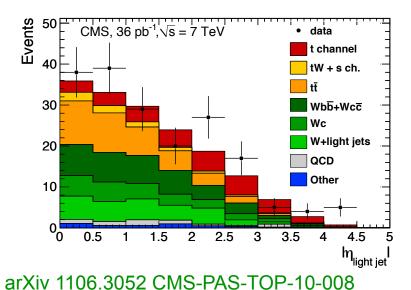
Event Selection

arXiv 1106.3052 CMS-PAS-TOP-10-008

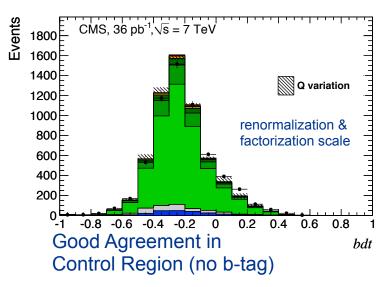
- t \rightarrow Wb with leptonic W $\rightarrow \ell \nu$ (e or μ)
 - lepton: p_T> 20 GeV muons and p_T>30 GeV electrons
 - Neutrino from Missing ET: require $M_T > 40$ (50) GeV μ (e)
- Exactly two anti-k_T jets (R=0.5) with p_T> 30 GeV lηI<5
 - · one jet b tagged with high purity tagger
- Two analysis methods:
 - \circ 2D template fit in η_j and $\cos \theta^* \ell_j$
 - t-channel signal has a non-central light jet & V-A predicts:

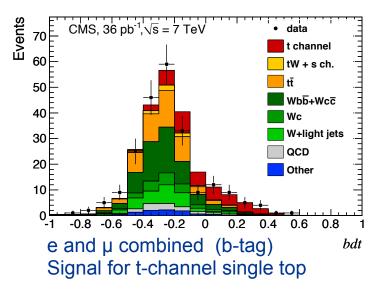
$$\frac{d\Gamma}{d\cos\theta^*} \propto 1 + A\cos\theta^*$$


- smaller model dependence
- Multi-variate analysis using a boosted decision tree
 - 37 observables exploiting expected kinematics (W, top, b-jet,...)
 - higher sensitivity
- Backgrounds
 - QCD modeled from data in control region using M_T
 - W+light jets fit simultaneously or data-driven estimate
 - VQQ MC normalized from top pair cross section analysis

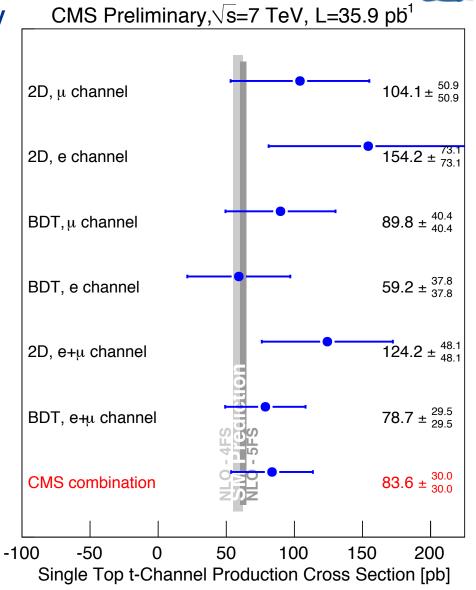


Single Top Fits




Projections of 2D Fit

Binned bdt discriminant



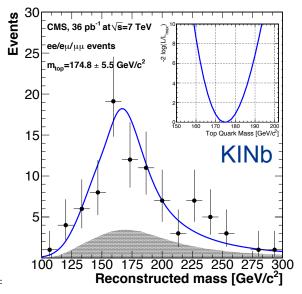
Both analyses find evidence for single top t-channel

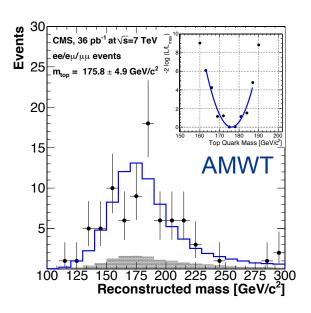
Single Top Measurement (t-channel)

- Combination of two analyses by BLUE (51% corr.)
 - \circ σ =83.6 ± 30_(stat+syst) ± 3_(lumi) pb
- Combined significance 3.5σ
- In agreement with SM
- 95% CL Limit on IV_{tb}I
 - ∘ IV_{tb}I>0.62 (0.68)
- Results accepted by PRL arXiv 1106.3052 CMS-PAS-TOP-10-008
- Work in progress with >1/fb of 2011 data, including s,tW channels

See T. Speer talk for details 10 Aug

Top Mass in Dilepton Channel


Dilepton Channel 36 pb⁻¹


- Mass via two known techniques (Tevatron) with improvements
 - KINb
 - AMWT
- Careful systematics

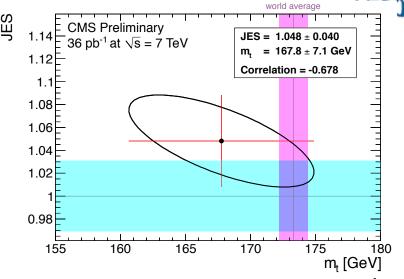
 (GeV/c^2)

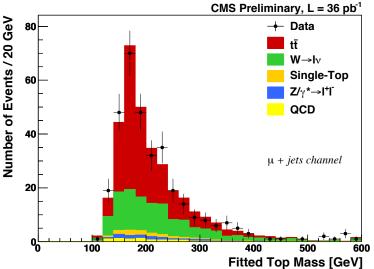
Source	KINb	AMWT
Overall jet energy scale	+3.1/-3.7	3.0
b-jet energy scale	+2.2/-2.5	2.5
Lepton energy scale	0.3	0.3
Underlying event	1.2	1.5
Pileup	0.9	1.1
Jet-parton matching	0.7	0.7
Factorisation scale	0.7	0.6
Fit calibration	0.5	0.1
MC generator	0.9	0.2
Parton density functions	0.4	0.6
b-tagging	0.3	0.5

arXiv 1105.5661 CMS-TOP-11-002 (acc. by JHEP)

Method	Measured m_{top} (in GeV/ c^2)	Weight
AMWT	$175.8 \pm 4.9 (\text{stat.}) \pm 4.5 (\text{syst.})$	0.65
KINb	$174.8 \pm 5.5 (\mathrm{stat.})^{+4.5}_{-5.0} (\mathrm{syst.})$	0.35
Combined	$175.5 \pm 4.6 (\mathrm{stat.}) \pm 4.6 (\mathrm{syst.})$	$\chi^2/\text{dof} = 0.040 \text{ (p-value} = 0.84)$

First top mass measurement from LHC


See A. Avetisyan talk for details 12 Aug


Top Mass in Lepton + Jets

Lepton+Jets Channel (36 pb-1)

- Again two methods CMS-PAS-TOP-10-006
 - Template Method
 - jointly with jet energy scale
 - 2 btags required; µ+jets
 - Ideogram Method
 - event-by-event likelihoods
 - best precision from kinematic fit taking all event information

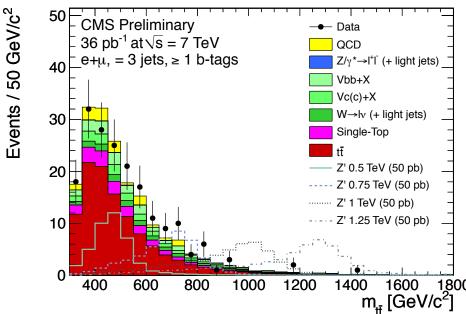
	Ideogram analysis
Source	$\delta m_{\rm t}$ (GeV)
JES (overall data/MC)	+2.4-2.1
JES $p_{\rm T}$ and η dependence	-
light vs b-jet scale	-
JER (10% effect)	0.07
MET (10% effect)	0.4
Factorization scale	1.1
ME-PS matching threshold	0.4
ISR/FSR	0.2
Underlying event	0.2
Pile-up effect	0.1
PDF	0.1
Background	0.5
B-tagging	0.05
Fit calibration statistics	0.1
Total systematic uncertainty	+2.8- 2.5

Preliminary

Ideogram Result: e/μ +jets $m_t = 173.1 \pm 2.1(stat)^{+2.8}_{-2.5}(syst)$ GeV.

Combination with dilepton channel

 $m_{\rm t} = 173.4 \pm 1.9 {\rm (stat)} \pm 2.7 {\rm (syst)}$ GeV.

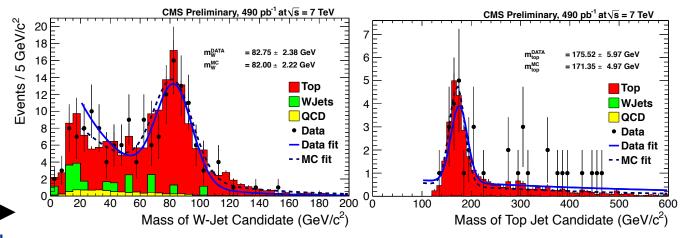

Top Pair Invariant Mass



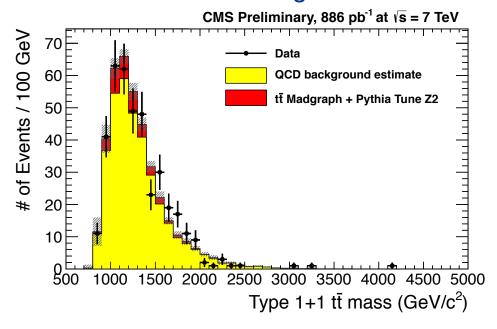
CMS-PAS-TOP-10-007

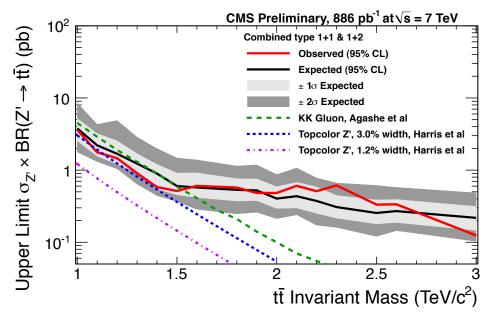
- Resonance search in tt
 - Z', Kaluza-Klein gluons, ...
- "Low mass" analysis
 - following (e/μ)+jet
 reconstruction
 - 8 channels
 - 3 jets w/ b-tag
 - 4 jets w/ 0,1,2 tags
 - kinematic fit
 - simultaneous template fits
- No deviation from SM
 - limits on narrow Z'

See S. Rappoccio talk for details 11 Aug



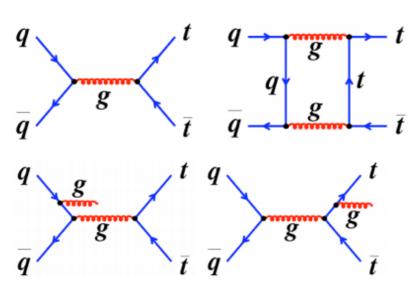
Top Pair Invariant Mass


CMS-PAS-EXO-11-006

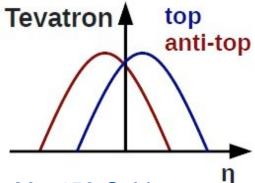

See S. Rappoccio talk for details 11 Aug

- High mass/boosted tops
 - fully hadronic channel
 - using jet substructure or top/W tagging
 - validated with boosted µ+jet sample

Data driven QCD bkgd

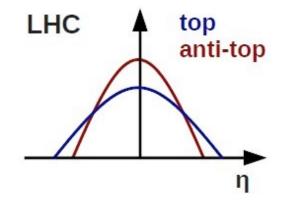

Limit on KK Gluons M>1.5 TeV

Top Charge Asymmetry


Top - Anti Top asymmetries from interference of LO, box, radiative diagrams

 $A_C = \frac{N^+ - N^-}{N^+ + N^-}$

Look at pseudorapidity or rapidity difference


Forward-backward
Observed by D0 & CDF
D0 PRL 100 142002 (2008)
CDF PRL 101, 202001 (2008)
arXiv 1101.0034

~2σ Larger than SM; Esp. M_{tt}>450 GeV Perhaps new physics? Axigluons?

"Width" difference CMS 36/pb CMS-PAS-TOP-10-010

Now updated to 1.09/fb CMS-PAS-TOP-11-014

LHC ~1% (dilution from gg production) Kuhn & Rodrigo PRL 81, 49 (1998)

See M. Segala talk for details 12 Aug

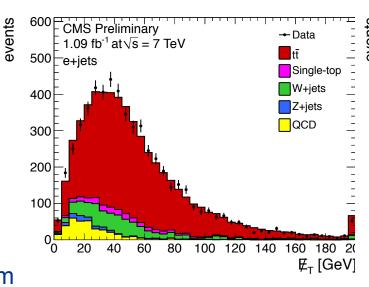
SM Prediction

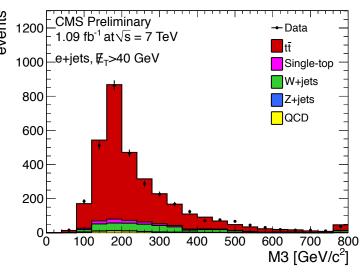
Tevatron ~5%

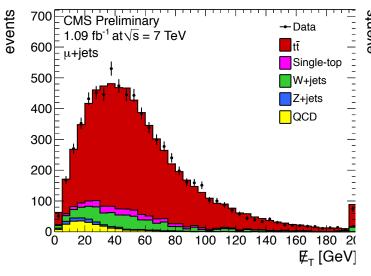
(updated for pdfs, m_{top})

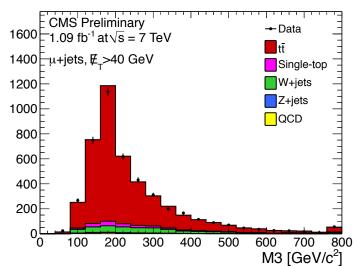
Top Samples for Ac

CMS-PAS-TOP-10-010

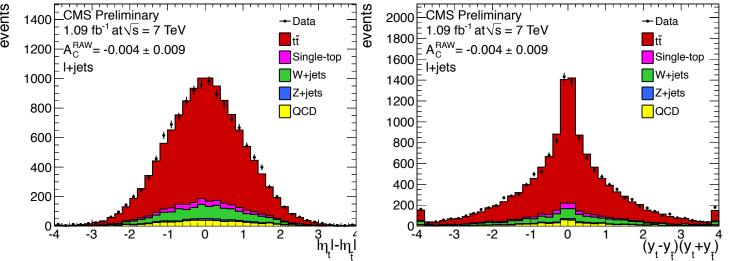

Lepton + Jets
Discrimination from


- ≥1 b-tagged jet (new)
- & Template fits to
- Missing ET
- M3 as M_{top} estimator

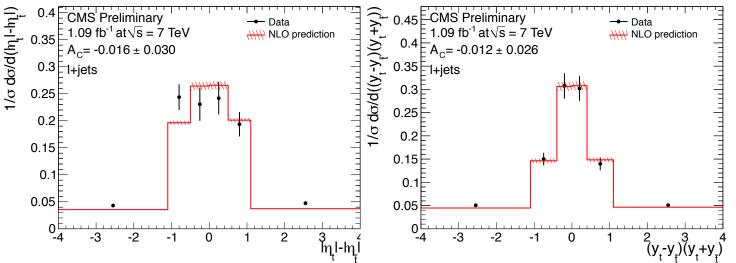

Clean top sample


Best jet combination from Likelihood using

- kinematics
- btagging
- m_t, m_W



M3 = invariant mass of 3 jets with max vector sum of p_T


Raw and Unfolded Asymmetry

CMS-PAS-TOP-10-010

Raw asymmetry is background-subtracted Then unfolded for acceptance & resolution effects

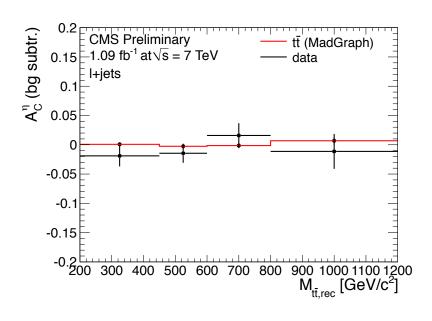
Observable	Raw A_C	BG-subtracted A_C	Unfolded (and corrected) A_C
$\Delta \eta $	-0.004 ± 0.009	-0.009 ± 0.010	$-0.016\pm0.030^{+0.010}_{-0.019}$
$\Delta(y^2)$	-0.004 ± 0.009	-0.007 ± 0.010	$-0.013 \pm 0.026 ^{+0.026}_{-0.021}$

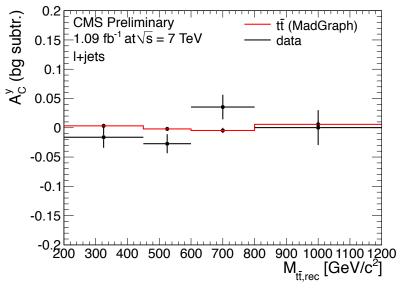
Top Charge Asymmetry Results

Sults CMS-PAS-TOP-10-010

CMS Measurement 1.09/fb

$$A_C^{\eta} = -0.016 \pm 0.030 \text{ (stat.)}_{-0.019}^{+0.010} \text{(syst.)}$$


$$A_C^y = -0.013 \pm 0.026 \text{ (stat.)}_{-0.021}^{+0.026} \text{(syst.)}$$


SM Expectation

$$A_C^{\eta} = 0.013 \pm 0.001$$

$$A_C^y = 0.011 \pm 0.001$$

- No significant difference from SM
 - No trends versus tt invariant mass (not yet unfolded in Mtt)

See M. Segala talk for details 12 Aug

Summary & Conclusion

- Large samples of top quarks produced and analyzed
 - Cross sections in agreement with (N)NLO SM predictions
 - Channels: dilepton (including τ), lepton+jets, fully hadronic
 - Single top: evidence seen at SM level for t-channel EWK production
 - Future: differential cross sections
- Top mass measurement
 - dilepton and lepton + jet channels at ~2% level
- Top samples used to probe for BSM physics
 - Search for peaks in M(t tbar) high M sensitivity beyond Tevatron
 - new jet substructure analysis in fully hadronic channel
 - Charge asymmetry consistent with SM (needs statistics)
 - And more properties to come: Wtb couplings, charge, ...
- Analysis of > 1 fb⁻¹ in progress (updates coming soon)

CMS Top Presentations at DPF

- See dedicated CMS talks for additional analysis details
 - Top pair cross section S. Khalil 9 Aug @ 5 pm
 - Single Top measurement T. Speer 10 Aug @ 2 pm
 - New physics M(t tbar) S. Rappoccio 10 Aug @ 5:30 pm
 - M_{top} A. Avetisyan 12 Aug @ 8:40 am
 - t tbar Charge Asymmetry M. Segala 12 Aug @ 9:40 am