

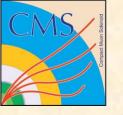
Measurement of the Top Quark Mass at $\sqrt{s} = 7$ TeV


Aram Avetisyan

On behalf of the CMS Collaboration

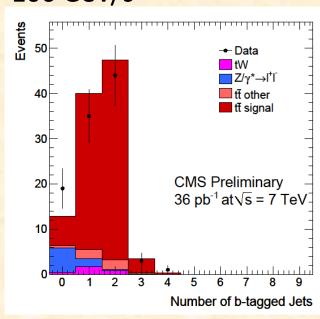
Top Quark Mass

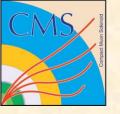
- Top quark mass is a fundamental parameter of the Standard Model
- The top quark is the most massive known particle
 - Top quark mass affects Standard Model observables via radiative corrections
 - Important input to electroweak fits
 - Provides constraints on Higgs boson and other hypothetical particles
- Precisely measured at the Tevatron: $m_{top} = 173.2 \pm 0.9 \text{ GeV}/c^2$
- Presented here are the first measurements at CMS
 - Use all data from 2010 (35.9 \pm 1.4 pb⁻¹)



tt Decay Channels

- "Lepton": e or μ
- Dilepton channel (bblvlv)
 - Low branching ratio (0.065), but very clean
 - 2 neutrinos → under-constrained system
 - Top quark mass measured with two different methods, AMWT and KINb
 - arXiv:1105.5661, CMS-PAS-TOP-10-006
- Lepton+Jets channel (bbjjlv)
 - High branching ratio (0.35)
 - Lepton can be used to eliminate large multijet background
 - Mass measured with Ideogram method
 - CMS-PAS-TOP-10-009



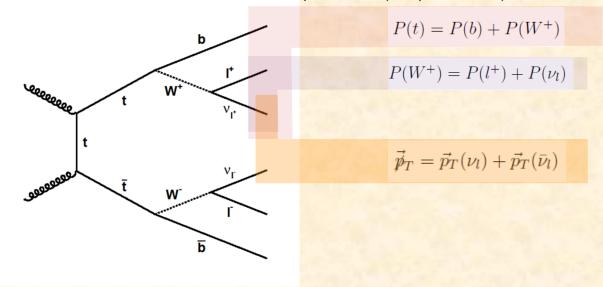

Dilepton Channel

Event Selection

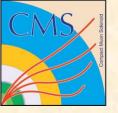
- Inclusive single lepton and dilepton triggers
 - Triggers evolve with LHC luminosity
- 2 isolated, prompt leptons of opposite sign (ee, μμ or eμ):
 - $-p_T > 20 \text{ GeV/}c \text{ and } |\eta| < 2.5 \text{ (e) } / 2.4 \text{ (}\mu\text{)}$
 - Invariant mass M > 12 GeV/c² (quarkonia veto)
 - Z^0 -veto for ee and $\mu\mu$: M < 76 GeV/ c^2 or M > 106 GeV/ c^2
- At least 2 jets with $p_T > 30 \text{ GeV/}c$, $|\eta| < 2.5$
 - Anti- k_T (R = 0.5) jets
 - Use the entire detector ("particle flow")
- Missing $E_T > 30$ GeV (ee, $\mu\mu$) / 20 GeV (e μ)
- b-tag driven jet selection:
 - Give b-tagged jets priority to avoid ISR/FSR

Event Yield

- 102 events selected
- Good agreement between data and simulation


Selection cut	Data	Total expected	<i>tt</i> signal	Total background		
pre-tagged sample						
≥2 isolated leptons	27257	28934 ± 49	158.8 ± 0.9	28775 ± 49		
opposite sign	26779	28545 ± 42	157.3 ± 0.9	28388 ± 42		
Z/quarkonia-veto	2878	2873 ± 27	139.3 ± 0.8	2734 ± 27		
≥2 jets	204	193 ± 2	103.1 ± 0.7	90 ± 2		
₽̈́ _T	102	$108.5 \pm 0.9 ^{+3}_{-2}$	$92.1 \pm 0.7 ^{\ +2}_{-1}$	$16.3 \pm 0.7 ^{+1}_{-1}$		
b-tagged sample						
= 0 b-tag	19	$15.9 \pm 0.6 ^{+13}_{-8}$	$6.9 \pm 0.2 ^{+7}_{-3}$	$9.0 \pm 0.6^{+6}_{-5}$		
= 1 <i>b</i> -tag	35	$40.9 \pm 0.5 ^{+17}_{-14}$	$35.7 \pm 0.4 ^{+9}_{-8}$	$5.1 \pm 0.4 ^{+8}_{-6}$		
\geq 2 <i>b</i> -tags	48	$51.7 \pm 0.5 ^{+14}_{-16}$	$49.5 \pm 0.5 ^{+11}_{-15}$	$2.2 \pm 0.2 ^{+3}_{-1}$		

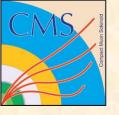
- Quoted uncertainties are statistical, except last four rows, which contain uncertainties for jet energy scale variation.
 - In the last three rows the b/mis-tagging efficiency variation is also included.


Top Quark Mass Reconstruction

• Dilepton decay: $t\bar{t} \to (l^+\nu_l b) \ (l^-\bar{\nu}_l \bar{b}) \longrightarrow$ 6 final state particles

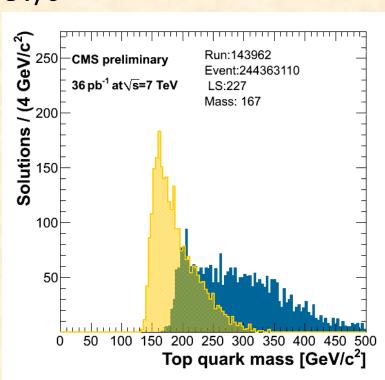
System is underconstrained!

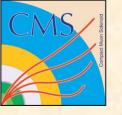
- Observed: 4 particles + Missing E_T
- Neutrinos escape unobserved → 6 unknowns
- Five constraints:
 - Transverse momentum conservation (2)
 - Invariant masses of $M_W = M(lv)$ (2)
 - Top and anti-top have the same mass (1)



Analytical Matrix Weighting Technique (AMWT)

- Use m_{top} itself as the missing constraint
 - Solve the kinematic equations analytically for values of m_{top} between 0 and 700 GeV/ c^2
 - Up to 8 solutions for every m_{top}
 - Jets and missing E_T are smeared to account for jet energy resolution
- Assign a weight to each solution:


$$W = f(x)f(\bar{x})p(E_{\ell^{+}}^{*} | m_{top})p(E_{\ell^{-}}^{*} | m_{top})$$

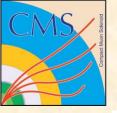

- f(x) = parton distribution function (CTEQ6.1)
- $-p(E_1 \mid m_{top}) = probability of lepton energy in top rest frame$
- Add all weights for all solutions with a given m_{top}
- Estimator for each event is the mass with the highest weight (mpeak)

Full Kinematic Analysis (KINb)

- Reconstruct each event 10⁴ times per lepton-jet assignment varying:
 - Jets and missing E_T, according to data distributions
 - $-p_z(tt)$, randomly drawn from simulation
- Numerically solve for top quark mass, accepting solutions if the two decay legs agree to within $\Delta m_{top} < 3 \text{ GeV}/c^2$
- Choose the lepton-jet assignment with the most solutions
- Construct distribution of the number of solutions as a function of m_{top}
- Mass estimator is the result of a Gaussian fit around the peak


Likelihood Fit

- Measure mass using a maximum likelihood fit of the peak mass distribution to templates from simulation
 - Signal templates generated for 17 top quark masses from 151 to 199 GeV/c^2 in intervals of 3 GeV/c^2
- Background: Drell-Yan, single top and non-dilepton tt
 - Drell-Yan templates are from data, others from simulation
- Concurrent fit of the 3 b-tagging multiplicities (0, 1 or 2 tags)
 - Templates restricted to 100-300 GeV/ c^2
- Minimum of -In(likelihood) gives estimate of top quark mass
- Method is linear in m_{top} and unbiased after calibration



Results of the Fit

KIND

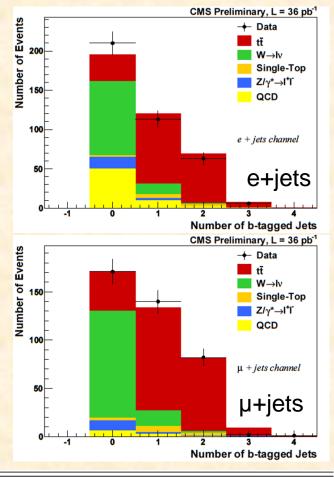
- Shaded distribution is background only, blue curve is MC total
- Inset shows likelihoods as a function of m_{top}

Systematics and Combination

Source	KINb	AMWT	Correlation factor	Combination
jet energy scale	+3.1/-3.7	3.0	1	3.1
<i>b</i> -jet energy scale	+2.2/-2.5	2.5	1	2.5
Underlying event	1.2	1.5	1	1.3
Pileup	0.9	1.1	1	1.0
Jet-parton matching	0.7	0.7	1	0.7
Factorization scale	0.7	0.6	1	0.6
Fit calibration	0.5	0.1	0	0.2
MC generator	0.9	0.2	1	0.5
Parton density functions	0.4	0.6	1	0.5
b-tagging	0.3	0.5	1	0.4

- Systematic uncertainties evaluated using pseudoexperiments
 - Dominant systematic uncertainty is the jet energy scale
- Measurements combined using the BLUE method
 - Statistical correlation: 0.57

Method	Measured m_{top} (in GeV/ c^2)	Weight
AMWT	$175.8 \pm 4.9(stat) \pm 4.5(syst)$	0.65
KINb	$174.8 \pm 5.5(stat)^{+4.5}_{-5.0}(syst)$	0.35
combined	$175.5 \pm 4.6(stat) \pm 4.6(syst)$	$\chi^2/dof = 0.040 \text{ (p-value} = 0.84)$

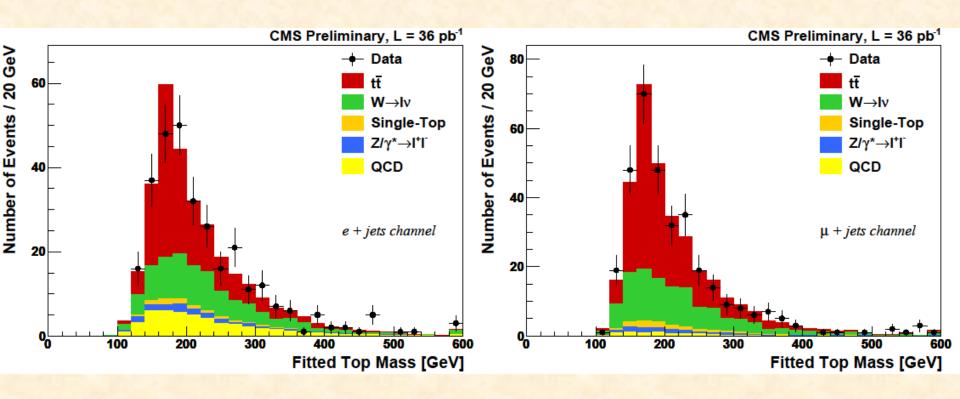


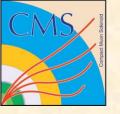
Lepton+Jets Channel

CMS powled now to traduce

Event Selection

- Single electron or single muon trigger
 - Muon with $p_T > 9 15 \text{ GeV/c}$ or electron with $E_T > 10 22 \text{ GeV}$
- Exactly one isolated, prompt lepton
 - Electrons: $p_T > 30 \text{ GeV/}c$ and $|\eta| < 2.5$
 - Muons: $p_T > 20 \text{ GeV/}c$ and $|\eta| < 2.1$
 - Veto events with second lepton
- Four or more jets
 - $-p_{T} > 30 \text{ GeV/}c \text{ and } |\eta| < 2.4$




	Data	Total expected	tŧ	Single-Top	$W \rightarrow l\nu$	$Z/\gamma* \rightarrow l^+l^-$	QCD
	muon+jets channel						
Events	396	358 ± 37	209 ± 33	12 ± 1	116 ± 9	12 ± 1	9.0 ± 1.0
Fraction	-	100%	59%	3%	32%	3%	2%
electron+jets channel							
Events	392	345 ± 32	169 ± 27	9.5 ± 0.6	99 ± 7	16 ± 1	52 ± 8
Fraction	-	100%	50%	3%	28%	4%	16%

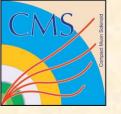
Kinematic Fit

- Fully reconstruct each event assuming that it is tt and perform fit
 - Phys. Rev. D 58, 052001, 1998 (used at the Tevatron and at Delphi)
- 12 possible jet assignments and 2 possible $p_z(v) \rightarrow 24$ solutions
 - Requires at least one solution with $\chi^2 < 10$

b-tagging

The probability to observe n_{btag} events is included in the likelihood:

$$P_{t\bar{t}}(x \mid m_t) = P_{t\bar{t}}(n_{btag}) \cdot P_{t\bar{t}}(x_{mass} \mid m_t)$$


$$P_{bkg}(x) = P_{bkg}(n_{btag}) \cdot P_{bkg}(x_{mass})$$

- -x is the set of observables in an event and m_t is the assumed mass
- An additional weight from b-tagging is computed for each solution
 - Combined with weight from fit

Assumed	Observed	Weight
flavor	flavor	P_{j}
b	b	ϵ_b
b	l	$(1-\epsilon_b)$
l	b	ϵ_l
l	l	$(1-\epsilon_l)$

$$w_{btag} = \prod_{j} P_{j}$$

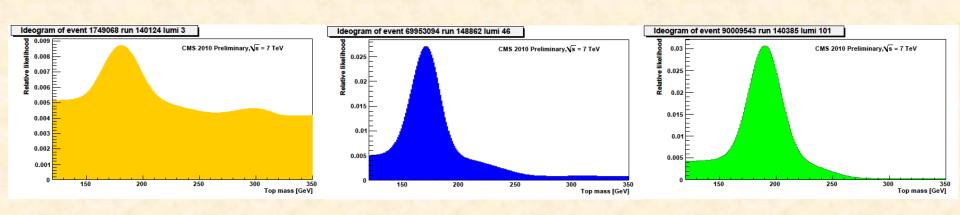
$$w_{i} = e^{-\frac{\chi^{2}}{2}} w_{btag}$$

Likelihood

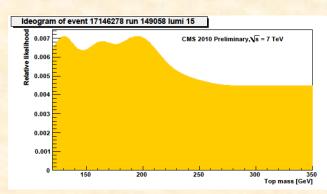
Likelihood to observe event as a function of the top quark mass:

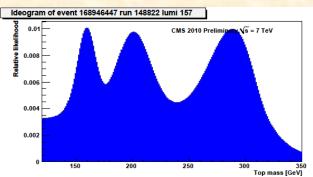
$$\mathcal{L}_{event}\left(x|m_{\mathsf{t}},f_{\mathsf{t}\bar{\mathsf{t}}}\right) = f_{\mathsf{t}\bar{\mathsf{t}}}P_{\mathsf{t}\bar{\mathsf{t}}}\left(x|m_{\mathsf{t}}\right) + \left(1 - f_{\mathsf{t}\bar{\mathsf{t}}}\right)P_{\mathsf{bkg}}\left(x\right)$$

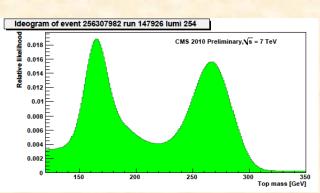
- f_{tt} is the fraction of signal in the data sample
- P_{bkg} is the background probability density function
 - Derived from simulation
- P_{tt} is the signal PDF

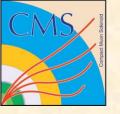

$$P_{\mathsf{t\bar{t}}}\left(x_{\mathsf{mass}}|m_{\mathsf{t}}\right) = \sum_{i}^{24} w_{i} \left(f_{\mathit{cp}} \cdot \int_{m_{\mathit{min}}}^{m_{\mathit{max}}} dm' G\left(m'|m_{i}, \sigma_{i}\right) BW\left(m'|m_{\mathsf{t}}, \Gamma_{\mathsf{t}}\right) + (1 - f_{\mathit{cp}}) WP(m_{i}|m_{\mathsf{t}})\right)$$

- f_{cp} is the probability of getting the correct permutation
- G is a Gaussian function centered at the fitted mass and with the width set to the uncertainty of the fitted mass
- BW is a relativistic Breit-Wigner distribution with $\Gamma_t = 2 \text{ GeV}$
- The wrong permutation (WP) is derived from simulation

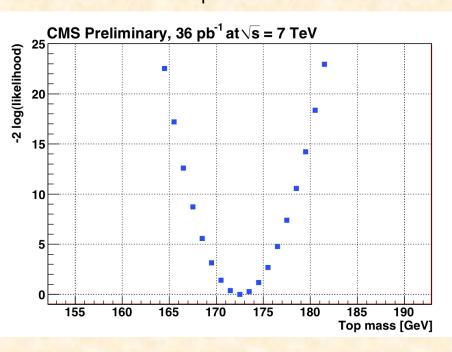


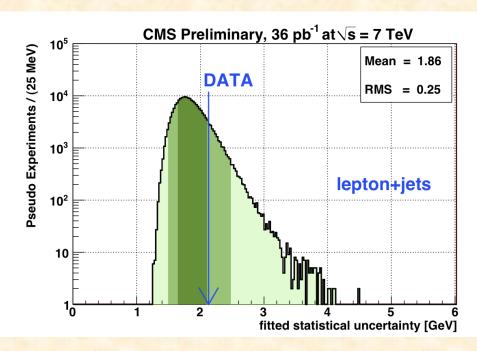

Ideogram Likelihoods

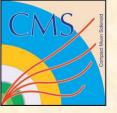

Examples of Ideogram likelihoods as a function of the top quark mass for 6 different events:



0 b-tags 1 b-tag 2 b-tags





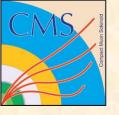


Result of the Fit

- Sample likelihood is the product of all event likelihoods
- Minimum of –In(likelihood) is computed by fitting a parabola to the three lowest points
- Result: $m_{top} = 173.1 \pm 2.1$ (stat) GeV/ c^2

Systematics

	T1 1 1
	Ideogram analysis
Source	$\delta m_{\mathrm{t}} \; (\mathrm{GeV})$
JES (overall data/MC)	+2.4-2.1
JER (10% effect)	0.07
MET (10% effect)	0.4
Factorization scale	1.1
ME-PS matching threshold	0.4
ISR/FSR	0.2
Underlying event	0.2
Pile-up effect	0.1
PDF	0.1
Background	0.5
B-tagging	0.05
Fit calibration statistics	0.1
Total systematic uncertainty	+2.8 - 2.5


- Jet energy calibrations are newer than in the dilepton analysis
 - Jet energy scale is still the dominant uncertainty

Combination

- Dilepton: $m_{top} = 175.5 \pm 4.6 \text{ (stat)} \pm 4.6 \text{ (syst)} \text{ GeV}/c^2$
- Lepton+Jets: $m_{top} = 173.1 \pm 2.1$ (stat) $^{+2.4}_{-2.1}$ (JES) ± 1.4 (o. syst) GeV/ c^2
- Lepton+Jets and Dilepton results combined using BLUE method
 - Samples are non-overlapping so statistical uncertainties are uncorrelated
 - Systematic uncertainties mostly correlated
 - Lepton+Jets uses improved jet calibrations
- Combined result:

 $m_{top} = 173.4 \pm 1.9 \text{ (stat)} \pm 2.7 \text{ (syst)} \text{ GeV/}c^2$

Conclusion and Outlook

- We have measured the top quark mass with 36 pb⁻¹ (2010 data)
 - Dilepton channel
 - Lepton+Jets channel
- Combined result is $m_{top} = 173.4 \pm 1.9$ (stat) ± 2.7 (syst) GeV/ c^2
- Working on updating the analyses with 2011 data
- With more statistics, more difficult measurements become possible
 - All-hadronic channel
 - Channels with taus