

Marc-Olivier Bettler, INFN Firenze on behalf of the LHCb collaboration

$$B^0_{(s)} \rightarrow \mu^+ \mu^-$$
 at LHCb

DFP2011 Heavy Flavor, August 12th 2011

$B^0_{(s)} o \mu^+ \mu^- ext{ at LHCb}$

LHCb

- \triangleright Large $b\overline{b}$ cross section,
- \triangleright Large acceptance for B decays,
- \triangleright Very efficient muon trigger,
- ▷ Good particle ID, tracking and reconstruction.

LHCb published limits $\mathcal{B}(B^0_{(s)} \rightarrow \mu^+ \mu^-)$ on the 37 pb⁻¹ of data from 2010 [Phys. Lett. B699 330 (2011), [hep-ex/1103.2465]]

We present here an update on 300 pb^{-1} collected in 3 months of 2011. Assuming SM branching fractions and after selection, we expect in these data

3.2 $B_s^0 \rightarrow \mu^+ \mu^-$ events and 0.32 $B^0 \rightarrow \mu^+ \mu^-$ events. LHCb has 630 pb⁻¹ on tape at the moment and expects to take ~ 1 fb⁻¹ this year.

Analysis Strategy

Selection

- \triangleright Muon trigger
- \triangleright **Soft selection**, similar to normalization channels
- \triangleright Blind signal region $[M_{B^0} 60 \text{ MeV}/c^2, M_{B_s^0} + 60 \text{ MeV}/c^2]$

Signal/background Discrimination

- ▷ Boosted Decision Tree combining topological and kinematic information
- ▷ **Invariant mass** of the muon pair
- **Data driven calibration** through control channels to get signal and background expectations
- **Normalization** to convert a number of observed events into a branching fraction using channels of known branching fractions

 $B^0_{(s)} \rightarrow \mu^+ \mu^-$ at LHCb

Boosted Decision Tree

Nine input variables such no correlation with mass:

- B impact parameter, lifetime and $p_{\rm T}$
- μ isolation, DOCA and minimal impact parameter

 10^{4}

10³

10

0.0 0.1

- \blacktriangleright *B* isolation
- ► Polarization variable

Trained on MC, with

 $\triangleright B_s^0 \rightarrow \mu^+ \mu^-$ signal and

 $\triangleright bb \rightarrow \mu\mu X$ background.

▶ minimum $\mu p_{\rm T}$

New variables

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

background signal

BDT

BDT Calibration

The BDT response is calibrated on data using:

- $\triangleright \; B^0_{(s)} \rightarrow h^+ h^-$ events for the signal
 - same topology as $B_s^0 \rightarrow \mu^+ \mu^-$
 - triggered very differently \triangleright use of candidates that did not contribute to the trigger decision to avoid bias.
- \triangleright events in the **mass sidebands** for the background.

The Invariant mass is modeled with a Crystal Ball.

▶ The means of the Gaussian are obtained from $B_s^0 \to K^+ K^-$ and $B^0 \to K^+ \pi^-$

► The width of the Gaussian is obtained from data the interpolation between the mass resolution of dimuon resonances $(J/\psi, \psi(2S) \text{ and } \Upsilon$'s) cross-checked with inclusive/exclusive fits of $B^0_{(s)} \rightarrow h^+h^-$.

 $\sigma = 24.6 \pm 0.2 \pm 1.0 \, \mathrm{MeV}/c^2$

The search windows are defined as $\pm 60 \text{ MeV}/c^2$ around each $B^0_{(s)}$ mass.

$$B^0_{(s)} \to \mu^+ \mu^-$$
 at LHCb

Background expectations

The combinatorial background expectation is extracted from a fit to the mass sidebands in bins of BDT.

Systematics are evaluated using different fit models and fit ranges.

 $B^0_{(s)} \rightarrow \mu^+ \mu^-$ at LHCb

Marc-Olivier Bettler

slide 7/17

Other Backgrounds

The dominant background is composed of real muons from $b\overline{b} \rightarrow \mu\mu X$ events. The other sources of background stem from:

• $pp \rightarrow p\mu^+\mu^-p$ processes. \triangleright Isolated muons,

LHCb-CONF-2011-022

- \triangleright Dimuon mass possibly high,
- ▷ Very low $p_{\rm T}$ ► Very efficiently anti-selected requiring $p_{\rm T}({\rm dimuon}) > 500 \,{\rm MeV}/c$

- B⁰_(s) → h⁺h⁻ processes were the two final states are misidentified as muons
 ▷ The misid probability is obtained from control channels and reweighted to the B kinematics
 - \triangleright The distribution of the misidentified $B^0_{(s)} \to h^+ h^-$ in bins of mass is evaluated from reweighted MC.

 $B^0_{(s)} \rightarrow \mu^+ \mu^-$ at LHCb

Normalization

Three complementary normalization channels are used:

f_s/f_d at LHCb

See Stefania Ricciardi's talk

 $B^0_{(s)} \rightarrow \mu^+ \mu^-$ at LHCb

Limit on $\mathcal{B}(B_s^0 \rightarrow \mu^+ \mu^-)$

Preliminary results from 300 pb^{-1} of data collected in 2011:

 $\mathcal{B}(B^0_s \to \mu^+ \mu^-) < 1.6 \quad (1.3) \times 10^{-8} \text{ at } 95 \% (90 \%) \text{ C.L.}$ expected limit, bkg-only < 1.0 $(0.8) \times 10^{-8}$ expected limit, bkg&SM < 1.5 $(1.2) \times 10^{-8}$

 $B^0_{(s)} \rightarrow \mu^+ \mu^-$ at LHCb

Limit on $\mathcal{B}(B^0 \rightarrow \mu^+ \mu^-)$

Preliminary results from $300 \,\mathrm{pb}^{-1}$ of data collected in 2011:

 $\mathcal{B}(B^0 \rightarrow \mu^+ \mu^-) < 5.2 \quad (4.2) \times 10^{-9} \text{ at } 95 \% \ (90 \%) \text{ C.L.}$ expected limit, bkg-only $< 3.1 \quad (2.4) \times 10^{-9}$

$$B^0_{(s)} \rightarrow \mu^+ \mu^-$$
 at LHCb

Prospects

Extrapolation based on the 37 pb^{-1} collected in 2010 and analysed with the 2010-analysis. This can be considered rather conservative.

The $\sim 1 \, \text{fb}^{-1}$ expected at the end of 2011 allow a considerable constraint on MSSM.

Prospects

Extrapolation based on the 37 pb^{-1} collected in 2010 and analysed with the 2010-analysis. This can be considered rather conservative.

Conclusions

- LHCb presents a preliminary result with 300 pb⁻¹ at $\sqrt{s} = 7 \text{ TeV}$ [LHCb-CONF-2011-037] $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) < 1.6 \ (1.3) \times 10^{-8} \text{ at } 95 \% \ (90 \%) \text{ C.L.}$ $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 5.2 \ (4.2) \times 10^{-9} \text{ at } 95 \% \ (90 \%) \text{ C.L.}$
- Combining with our previous result on 37 pb⁻¹: $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) < 1.5 \ (1.2) \times 10^{-8} \text{ at } 95 \% \ (90 \%) \text{ C.L.}$
- And combining further with CMS result: [LHCb-CONF-2011-047] [CERN-PH-EP-2011-120, sub. to PRL]

 ${\cal B}(B^0_s\! o \mu^+\mu^-) < 1.1~(0.9) imes 10^{-8}~{
m at}~95\,\%~(90\,\%)~{
m C.L.}$

• The excess seen by CDF is not confirmed. $\boxed{\text{hep-ex}/1107.2304}$

 $B^0_{(s)} \rightarrow \mu^+ \mu^- \text{ at LHCb}$

Backup Material

Nice candidate

Best $B_s^0 \rightarrow \mu^+ \mu^-$ candidate in terms of BDT (0.9) and mass (5357 MeV/ c^2). The muons' vertex is well displaced with respect to the primary vertex (l = 115 mm). The *B* momentum is 58.16 GeV/c, its transverse momentum is 3.5 GeV/c and its lifetime is 3.52 ps.

 $B^0_{(s)} \rightarrow \mu^+ \mu^-$ at LHCb

Marc-Olivier Bettler

Observed distribution

 $B^0_{(s)} \rightarrow \mu^+ \mu^-$ at LHCb

New Variables, BDT vs GL

- ► B isolation = $p_{\rm T}(B)/p_{\rm T}(B) + \sum_{\rm tracks} p_{\rm T}({\rm tracks})$ for tracks such that $\sqrt{\delta\eta^2 + \delta\phi^2} < 1.0$.
- ▶ Polarization variable = $\frac{(p_{y,\mu} \times p_{x,B}) (p_{x,\mu} \times p_{y,B})}{2 \times p_{T,B} \times M_B}$ with μ is the muon with minimum p_T . Cosine of the angle between the muon momentum in the *B* rest frame and the vector perpendicular to the *B* momentum and the beam axis.

Our previous result was obtained using another MultiVariate tool: the GL. With additional variables, the best discrimination power was obtained using a BDT. Trained and tested on MC.

Marc-Olivier Bettler

Normalization uncertainties

	${\mathcal B}$	$\frac{\epsilon_{\rm cal}^{\rm REC}\epsilon_{\rm cal}^{\rm SEL \rm REC}}{\epsilon_{\rm sig}^{\rm REC}\epsilon_{\rm sig}^{\rm SEL \rm REC}}$	$\frac{\epsilon_{\rm cal}^{\rm TRIG \rm SEL}}{\epsilon_{\rm sig}^{\rm TRIG \rm SEL}}$	N_{cal}	$\alpha^{cal}_{B_d\to\mu^+\mu^-}$	$\alpha^{cal}_{B_s \to \mu^+ \mu^-}$
	$(\times 10^{-5})$				$(\times 10^{-10})$	$(\times 10^{-9})$
$B^+ \rightarrow J/\psi K^+$	6.01 ± 0.21	0.48 ± 0.02	0.95 ± 0.01	107358 ± 1759	2.58 ± 0.16	0.966 ± 0.096
$B^0_s \rightarrow J/\psi \phi$	3.4 ± 0.9	0.23 ± 0.02	0.95 ± 0.01	5919 ± 84	3.39 ± 0.98	1.27 ± 0.35
$B^0\!\to K^+\pi^-$	1.94 ± 0.06	0.86 ± 0.03	0.051 ± 0.01	5732 ± 506	2.47 ± 0.57	0.92 ± 0.22

Summary of the factors and their uncertainties needed to calculate the normalization factors $(\alpha_{B^0_{(s)} \rightarrow \mu^+ \mu^-})$ for the three normalization channels considered. The trigger efficiency and number of $B^0 \xrightarrow{\sim} K^+ \pi^$ candidates correspond to TIS events only.

	$B^+ \rightarrow J/\psi K^+$	$B_s^0 \rightarrow J/\psi\phi$	$B^0 \rightarrow K^+ \pi^-$
	$\mathcal{B} = 6.01 \times 10^{-5} \pm 3.5 \%$	$\mathcal{B} = 3.4 \times 10^{-5} \pm 26 \%$	$\mathcal{B} = 1.94 \times 10^{-5} \pm 3.1 \%$
	trigger and PID similar to signal channel	trigger and PID similar to signal channel	different trigger: use $B^0_{(s)} \rightarrow h^+h^-$ candidates that did not contribute to trigger decision
	+1 track wrt signal: error on tracking ϵ dominates in ϵ ratio	+2 tracks wrt signal: error on tracking ϵ dominates in ϵ ratio	topology identical to signal
	f_s/f_d dominates overall	${\cal B}$ dominates overall	f_s/f_d , trigger uncertainty
$B^0_{(s)}$	$\mu \to \mu^+ \mu^-$ at LHCb	Marc-Olivier Bettler	slide 2

BDT Calibration

Full fit to the invariant mass distributions of $B^0_{(s)} \to h^+h^-$ candidates in the $\pi\pi$ mass hypothesis for the whole sample (top left) and for the samples in the bin 2,3,4 of the BDT (top right, bottom left, bottom right).

 $B^0_{(s)} \rightarrow \mu^+ \mu^-$ at LHCb

Marc-Olivier Bettler

slide 22/17

Diphoton Background

Topology look like signal when associated with another PV in the event.

Dimuon mass covers B mass range.

But very low $p_{\rm T}$, can be anti-selected very efficiently with a $p_{\rm T}$ cut at 500 MeV (98.2 % eff. on signal).

LHCb-CONF-2011-022

