

Search for New Physics with Mono-Jet and Missing Transverse Energy in 7 TeV pp collisions at CMS

Sarah Alam Malik

The Rockefeller University

on behalf of the CMS collaboration

The Rockefeller University

Division of Particle and Fields 2011: Brown University, RI, USA

Outline

- Introduction
- Motivation : Large Extra Dimensions
- signatures of LED
- Overview of mono-jet analysis
- Data-driven background estimation
- Results
- Interpretation

The Signature

- signature : one energetic jet and large missing energy (Met)
- model-independent topology based search
- multitude of new physics scenarios with same signature

Motivation: Why is gravity so weak?

Force	Particle	Relative strength
Strong	gluon	1
Electromagnetic	photon	10-2
Weak	W ⁺ , W ⁻ and Z	10 ⁻¹³
Gravity	Graviton(?)	10 ⁻³⁸

- Gravity is weakest of Standard Model forces.
- Ignore gravity at particle level, many many orders of magnitude smaller than other interactions
- Effects of gravity only becomes important at Planck scale (10¹⁹ GeV)
- Hierarchy problem : Why is the electroweak scale so different from Planck scale?

Motivation: Large Extra Dimensions

- Large Extra Dimensions proposed as solution for hierarchy problem in late 1990s
- ADD model proposed by Arkani-Hamed, Dimopoulos and Divali
- Phys. Lett. B. 429 (1998) 263
- introduce *n* extra spatial dimensions
- All SM particles confined to our brane
- Gravitons free to propagate in bulk
- gravitational force diluted, appears to be weak

Gravity in Large Extra Dimensions

- Suppose n extra compact spatial dimensions of radius R
- Apply Gauss's law in (4+n) dimensions, gravitational potential between 2 test masses m_1 and m_2 separated by distance $r \ll R$:

 M_D = fundamental Planck scale

$$V(r) \sim \frac{m_1 \times m_2}{M_D^{n+2}} \frac{1}{r^{n+1}}, (r \ll R)$$

• If test masses are separated by $r \gg R$:

$$V(r) \sim \frac{m_1 \times m_2}{M_D^{n+2} R^n} \frac{1}{r}, (r \gg R)$$

• Compared to Newtonian potential:

$$M_{Pl}^2 \sim M_D^{n+2} R^n$$

Signatures of Large Extra Dimensions

Setting $M_D \sim 1 \text{ TeV}$:

For n=1, $R \sim 10^{12} \text{m} \rightarrow \text{excluded!}$

For n =2, R < 10^{-2} cm \rightarrow same order as direct probes of gravity

For n =6,7, R \sim 1 fm \rightarrow only testable at colliders

- Real and virtual production of gravitons
- virtual graviton exchange → signature : di-photon, di-lepton
- direct graviton production $q\overline{q} \rightarrow gG$, $qg \rightarrow qG$, $gg \rightarrow gG$, real graviton emitted in final state \rightarrow signature: jet +met

Limits on Large Extra Dimensions

Extra dimensions (n)	Limit on M _D (TeV)		
	D0	CDF	LEP
2	0.921	1.4	1.6
3	0.877	1.15	1.2
4	0.848	1.04	0.94

Measurement strategy

Strategy

- search for excess above SM
- understanding of backgrounds crucial

Signal

Backgrounds

Z→vv +jet, irreducible background, looks just like signal

W+jets, lepton is lost

QCD, jet is mismeasured, producing Met.

Monojet Selection

Select topology

- •Use events collected using jet and Met triggers
- one energetic jet, $p_T > 110 \text{ GeV}$, $|\eta| < 2.4$
- allow one additional jet with $p_T > 30 \text{ GeV}$
- veto additional jets $(N_{jets} < 3)$
- large missing energy, Met > 150 GeV

Reject background

- QCD
- $-\Delta\phi(j1,j2)<2$
- -remove events with back to back jets
- EWK
- -lepton veto
- -reject events with isolated electrons, muons
- -veto events with isolated tracks, removes taus.

After full selection, largest backgrounds:

- $Z \rightarrow vv + jet$, accounts for $\sim 2/3$
- W+jets, $\sim 1/3$
- QCD, ttbar: small.

Estimation of invisible Z background from Z→ll and W→lv

- exploit similar kinematic characteristics of $Z\rightarrow vv$, $Z\rightarrow ll$ and $W\rightarrow lv$
- remove leptons from event, interpret as missing energy to model Met in Z→vv events
- potentially 4 statistically independent estimates of background
- Results from muon channel shown, comparable results from electron channel (not discussed here).

Estimation of invisible Z background from Z→ll and W→lv

 $Z\rightarrow vv$ from $Z\rightarrow ll$

 $Z\rightarrow vv$ from $W\rightarrow lv$

 $N(Z \to vv) = \frac{N_W^{obs} - N_W^{bgd}}{A_W \cdot \varepsilon_W} \cdot R\left(\frac{Z \to vv}{W \to lv}\right)$

- use same dataset (Jet/Met) as signal region
- select 2 well reconstructed and isolated muons with; $p_T > 20$, $|\eta| < 2.1$, opposite sign charge
- dimuon mass 81-101 GeV
- apply search selection with Met defined as vector sum of p_T of muons
- correct for acceptance and reconstruction efficiencies
- negligible background
- take R from theory

- use same dataset (Jet/Met) as signal region
- select 1 well reconstructed and isolated muon with; $p_T > 20$, $|\eta| < 2.1$
- transverse mass (M_T) 50 100 GeV
- apply search selection with Met defined as vector sum of Met and muon
- correct for acceptance and reconstruction efficiencies
- correct for background
- take R from theory, correct for the difference in p_T spectra of bosons at high p_T

Estimation of invisible Z background from Z→µµ

- 13 Z→μμ events passing selection
- negligible background
- statistically limited
- $Z\rightarrow vv$ prediction : 162 ± 45

Estimation of invisible Z background from W→µv

- 113 events in data passing W→µv selection
- shape and yield obtained in data consistent with MC
- background contribution small, use MC for correction, $\sim 8\%$
- correct for acceptance and reconstruction efficiency, 0.42.
- Ratio of $Z\rightarrow vv$ and $W\rightarrow \mu v$ taken from theory, correct for difference in W/Z p_T spectra.
- Z \rightarrow vv prediction : 176 ± 30, consistent with estimation from Z \rightarrow µµ
- use data/MC ratio of this sample to predict W+jets background to search selection

Background	Yields
Z→vv+jets	176
W+jets	117
Z+jets	0.8
tt	1.7
QCD	1.4
Predicted	297 ± 45
Observed	275

- No excess of events observed
- Set limits

Interpretation: ADD

Extra dimensions (n)	Limit on M _D (TeV)		
	CDF	LEP	CMS monojet
2	1.4	1.6	2.29
3	1.15	1.2	1.92
4	1.04	0.94	1.74
5	0.99	0.77	1.65
6	0.95	0.66	1.59

Significant improvement over limits from LEP and Tevatron

Interpretation : Unparticles

- physics originating from a scale invariant sector, coupled to SM through a connector sector at a high mass scale.
- H.Georgi, "Unparticle Physics", Phys. Rev. Lett. 98 (2007) 221601
- spectrum of invisible, massless and weakly interacting particles
- same signature as ADD
- For unparticles with spin= 0, production cross-sections above 54 pb excluded at 95% confidence level for $d_{\rm U}=1.7$ and $\Lambda_{\rm U}=1$ TeV
- significant improvement over previous limits

Conclusion

- Searched for new physics in the final state containing one or two hadronic jets and large missing energy using 36 pb⁻¹
- generic search, can be used to constrain many models
- data-driven estimation for dominant backgrounds
- Results consistent with SM predictions, no excess observed
- Limits placed on Large Extra Dimensions model ADD (and Unparticles)
- Significant improvement over limits from LEP and Tevatron
- Much more data on tape, results soon...

LHC Limits on ADD

CMS - 36pb⁻¹

δ	K factor	LO Exp.	LO Obs.	NLO Exp.	NLO Obs.
2	1.5	2.17	2.29	2.41	2.56
3	1.5	1.82	1.92	1.99	2.07
4	1.4	1.67	1.74	1.78	1.86
5	1.4	1.59	1.65	1.68	1.74
6	1.4	1.54	1.59	1.62	1.68

ATLAS- 1fb-1

	95% CL limits or	M_D for the ADD	mode	
	HighPt s	selection		
n	expected [TeV]	observed [TeV]		
2	2.98	3.16		
3	2.44	2.56		
4	2.18	2.27		
5	2.03	2.10		
6	1.92	1.99		

Extra dimensions (n)	Limit on M _D (TeV)		
	CMS (36pb ⁻¹)	ATLAS (36pb ⁻¹)	ATLAS (1fb ⁻¹)
2	2.29	2.3	3.16
3	1.92	2.0	2.56
4	1.74	1.8	2.27
5	1.65	-	2.10
6	1.59	-	1.99

Systematic uncertainties

Signal	Acceptance	JES	PDF
ADD	0.3-2.2%	3-7%	1-2%
Unparticles	0.6-2.9%	7.5-11.5%	3-7%