

Combined CDF and DØ upper limits on MSSM Higgs boson production in pp̄ collisions at 1.96 TeV

Louise Suter For the DØ and CDF collaborations DPF 2011

- The Tevatron
- Quick guide to the MSSM
- Object Identification
- Combinations
 - CDF and DØ
 - Inputs
 - Systematics
 - Limits
 - DØ
 - Inputs
 - Systematics
 - Limits

The Tevatron

Recorded: 10.3 fb⁻¹ Delivered: 11.5 fb⁻¹

Showing results with up to 7.3 fb⁻¹

- The Tevatron
- Quick guide to the MSSM
- Object Identification
- Combinations
 - CDF and DØ
 - Inputs
 - Systematics
 - Limits
 - DØ
 - Inputs
 - Systematics
 - Limits

MSSM Higgs boson production

- Cover the 3 neutral Higgs $\phi = (h, H, A)$
 - charged Higgs results covered in other talk
- Large tan β is preferred, leads to enhanced coupling to down type quarks and leptons
- Production/decay mechanism
 - фb **→**bbb
 - фb **→**ттb
 - φ →ττ
- Branching Ratios
 - BR(φ → bb) ~ 90%
 - BR(φ → ττ) ~ 10%

SUSY Parameters

- Tree level MSSM Higgs sector described by two parameters
 - 1. M_A
 - 2. $\tan \beta = \langle H_u \rangle / \langle H_d \rangle$
- Radiate corrections introduce dependence on other parameters
- Limits set in model independent case
- Excluded in M_A , tan β for two scenarios:

Parameter	m _h -max	no-mixing
μ	200 GeV	200 GeV
M _{SUSY}	1000 GeV	2000 GeV
X _t	2000 GeV	0 GeV
M ₂	200 GeV	200 GeV
M ₃	800 GeV	1600 GeV

- The Tevatron
- Quick guide to the MSSM
- Object Identification
- Combinations
 - CDF and DØ
 - Inputs
 - Systematics
 - Limits
 - DØ
 - Inputs
 - Systematics
 - Limits

Object Identification: Taus

• Different tools for leptonic and hadronic tau decay

- μ,e use standard leptonic identification tools
- hadronic tau decay --- large jet background $ightarrow \pi^{(}$

• D0 and CDF have specific identification tools

Object Identification: Taus

• Define 3 types due to decay products

Isolation cone

• Select 1 or 3 tracks in variable size and cone.

Remove background with NN

Efficiency = 65% Fake rate = 2.5% Efficiency = 50% Fake rate < 1%

Object Identification: b-jets

Use lifetime information – corrected for data MC differences

CDF: Secondary vertex reconstruction NN increase purity 40% efficiency, 0.5% mis-tag

DØ: NN tagger

Secondary vertex and dca based inputs derived from basic b-tagging tools

High efficiency and purity 50% efficiency., 0.5% mis-tag

- The Tevatron
- Quick guide to the MSSM
- Object Identification
- Combinations
 - CDF and DØ
 - Inputs
 - Systematics
 - Limits
 - DØ
 - Inputs
 - Systematics
 - Limits

- Last updated in 2009
- Using up to 2.2 fb⁻¹ integrated luminosity
- Using just φ->ττ decays
- $DØ: \phi \rightarrow \tau_{\mu}\tau_{had}$
 - 2.2fb⁻¹ integrated luminosity
 - Released in 2008
 - combined with a DØ 1fb⁻¹ covering $\phi \rightarrow \tau_e \tau_{\mu}, \tau_e \tau_{had}, \tau_{\mu} \tau_{had}$
- CDF: $\phi \rightarrow \tau_e \tau_\mu, \tau_e \tau_{had}, \tau_\mu \tau_{had}$
 - 1.8fb⁻¹ integrated luminosity
 - Released in 2009

- Select two high P_t isolated leptons of opposite sign
- look for excess in

$$M_{vis} = \sqrt{(P_{\tau_1} + P_{\tau_2} + P_{\rm T})^2}$$

- Model Independent Limits
 - σ x BR(φ->ττ) at 95% CL level

DØ and CDF Combination Limits

- Model Independent Limits
 - σ x BR(φ->ττ) at 95% CL level

Limits in good agreement with expected, no significant excess seen. Correlation of systematics between experiments taken into account.

DØ and CDF Combination Limits

Tan β width effects not expected to have large effect in this region New combination out soon!

- The Tevatron
- Quick guide to the MSSM
- Object Identification
- Combinations
 - CDF and DØ
 - Inputs
 - Systematics
 - Limits
 - DØ
 - Inputs
 - Systematics
 - Limits

DØ Combination

Limits set on production cross section of Higgs boson in association with one or more b quark

Combine two channels: bφ->bbb: 5.4fb⁻¹ integrated luminosity bφ->bττ: 7.3fb⁻¹ integrated luminosity

DØ Combination Inputs

úт

bΦ -> bbb

- Select 3 b-tagged jets
 - 3b jets greatly reduces background
- Background dominated multijet events
 - Predicted from data/MC
- Train discriminant to further separate signal 025
- Limits set using di-jet invariant mass

- Assume one tau decays hadronicly and one to a muon
- 7.3fb⁻¹ integrated luminosity
- Builds on pervious 2.7fb⁻¹ result
 - Improved systematic uncertainties
 - Improved trigger approach
- Combines discriminants D_{MJ}, D_{tt}, M_{hat}, NN_{bb} into likelihood

-0.2 0 0.2 0 D_f [$m_{\phi} = 110 \text{ GeV/c}^2$]

0.4

bφ -> bττ

0.6

DØ Combination Inputs

- Model Independent Limits
 - $\sigma \times BR(\phi \rightarrow bb)$ or $\sigma \times BR(\phi \rightarrow \tau\tau)$ at 95% CL level

2.5 s.d. significance excess at 120 GeV in bφ->bbb

DØ Combination Inputs

DØ Combination Limits

Model Independent Limits

- Range 90 300 GeV
- BR(φ ->ττ) + BR(φ->bb) = 1
 - set for 3 values of BR(φ->ττ) = 6%, 10%, 14%

Best limits from the Tevatron on a SUSY Higgs

DØ Combination Limits

Interpreted in two MSSM scenarios

bbb channel remains the exclusive domain of Tevatron experiments

Conclusions

- Exciting new results out of the Tevatron
 - new results in
 - φ **→**ττ
 - bφ →bbb
 - bφ **→**bττ
 - cover a wide range of channels using up to 7.3fb⁻¹
- DØ combination probing theoretically interesting regions.
- New DØ and CDF combination out soon!

Back Up

SUSY

- Introduce symmetry between bosons and fermions
 - Solution to hierarchy problem
 - Dark matter candidate
 - GUT scale unification
- Simplest form: MSSM
 - Two Higgs doublets: H_u, H_d
 - After EW symmetry breaking:
 5 Higgs Bosons h, H, A, H±

Standard particles

SUSY particles

φ 🗲 ττ

New Result!

- Select two high P_t isolated leptons of opposite sign
- look for excess in

$$M_{vis} = \sqrt{(p_{\tau_h} + p_\mu + \not\!\!P_{\mathrm{T}})^2}$$

5.4 fb⁻¹ integrated luminosity

•

Cross section imes Br 95% CL (pb)

bh -> bbb Cross section imes Br 95% C.L. [pb] DØ, 5.2fb⁻¹ a) m_h max, μ=-200 GeV gu 120 DØ, 5.2 fb 10² DØ exclusion Expected LEP exclusion Expected ±1 s.d. 100 Expected ±2 s.d. Observed 80 10 | m_h max 60 40 Observed Expected Exp. ± 1 s.d. 1⊧ 20 Exp. ± 2 s.d 300 100 150 200 250 150 200 250 100 300 M_∧ [GeV] M_{A} [GeV] tanβ DØ, 5.4 fb⁻¹ (b) **0.3** 90 Probability DØ no-mixing, µ=+200 GeV 80 0.25 - M_△ = 120 GeV DØ exclusion 70 — M_ = 180 GeV LEP exclusion 0.2 $-M_{\Delta}^{2} = 240 \text{ GeV}$ 60 50 no mixing 0.15 40 **0.1** 30 DØ Observed 20 DØ Expected 0.05 10 250 30 М_{ьБ} [GeV] 100 150 200 250 300 100 150 200 300 50 M_₄ (GeV) 31

New Result!

- Look in di-jet mass spectrum
- Select events 3 or more b-tagged jets

- background modeled data driven tech in double tagged events
- separate background and signal using 2D fit

2.6 fb⁻¹ integrated luminosity

- Model Independent Limits
 - σ x BR(φ->bb) at 95% CL level
 - M_a = 90 300 GeV

D0: 2.5 s.d. significance excess at 120 GeV CDF: > 2 sigma discrepancy 130-150 GeV

MSSM exclusions in $M_{A_{c}}$ tan β plane

bφ**→** bττ

New Result!

BR(φ->ττ) ~ 10%

- h-> $\tau_e \tau_{had}$: 3.7fb⁻¹ integrated luminosity
 - Specific discriminants for main backgrounds D_{MJ}, D_{tt}

Even Newer Result!

- h-> $\tau_{\mu}\tau_{had}$: 7.3fb⁻¹ integrated luminosity
 - Improved systematic uncertainties
 - Improved trigger approach
 - Combined D_{MJ}, D_{tt}, M_{hat}, N_{bb} into likelihood

bφ**→** bττ

New Result!

- Model Independant Limits
 - σ x BR(φ->ττ) at 95% CL level
 - M_a = 90 300 GeV

DØ and CDF Combination Systematics

Dominant effects

- DØ object Id, Trigger, luminosity, signal acceptance
- CDF object Id, luminosity, signal acceptance
- Correlated systematics
 - luminosity, tt and diboson production cross sections

Uncorrelated systematics

- multijet determination
- calibration of fake rate, unvetoed ->ee conversions, btagging efficiency, mistag rates.