Constraining Sterile Neutrinos at IceCube

Yu Gao

Univ. of Oregon

Hints for v anomaly

• LSND anomaly A. Aguilar et al. (2001)

• MiniBooNE consistent with LSND v data

A. Aguilar-Arevalo et al. (2001)

• Reactor experiments:

More v_e disappearance from flux re-evaluation?

T. Mueller, et. al. (2011)

Sterile v is possible

• 3 + 1, 2 steriles:

 v_s mixed with v_e v_μ , as mediators for extra oscillation, plus additional phases for enhanced \mathcal{CP} .

• 2 + 2 steriles:

Disfavored by the lack of solar/atmospheric signal (Maltoni, et.al. 2004)

Sterile: no correction to Z width

CMB: favors an extra radiation-like species

Global fits with steriles

Kopp, Maltoni, Schwetz (2011):

"one sterile neutrino is not sufficient"

What can IceCube see?

From the upward atmospheric neutrinos

- \sim TeV $v_{\mu}(v_{\mu})$ depletion in the energy spectrum
- Distortion in the angular distribution
- Reduced integrated flux? (need good understanding of atm. bkg)

 $\Delta m_{s1}^{2} > 0$

Solid: 3+2 steriles

Dashed: 3 gen only

The 3+2 scenario

- Global 3+2 fits requires at least one Δm^2 at eV²
- Best-fit point as a sample point

Kopp, Maltoni, Schwetz (2011) $\frac{\Delta m_{41}^2 \ |U_{e4}| \ |U_{\mu 4}| \ \Delta m_{51}^2 \ |U_{e5}| \ |U_{\mu 5}| \ \delta/\pi \ \chi^2/\text{dof} }{3+2 \quad 0.47 \quad 0.128 \quad 0.165 \quad 0.87 \quad 0.138 \quad 0.148 \quad 1.64 \quad 110.1/130} \\ 1+3+1 \quad 0.47 \quad 0.129 \quad 0.154 \quad 0.87 \quad 0.142 \quad 0.163 \quad 0.35 \quad 106.1/130$

Extended to 5 generations

$$\begin{split} \tilde{\mathbf{H}} &= \frac{1}{2E_{\nu}} \mathbf{U}^* \operatorname{\mathbf{diag}} \left(0, \delta m_{21}^2, \delta m_{31}^2, \delta m_{41}^2, \delta m_{51}^2\right) \mathbf{U}^{\mathrm{T}} \\ &\pm \operatorname{\mathbf{diag}} \left(A_{CC} - A_{NC}, -A_{NC}, -A_{NC}, 0, 0\right) \end{split}$$

$$\mathbf{U} &= \mathcal{R}_{45} \mathcal{R}_{35} \mathcal{R}_{34} \mathcal{R}_{25} \mathcal{R}_{24} \mathcal{R}_{23} \mathcal{R}_{15} \mathcal{R}_{14} \mathcal{R}_{13} \mathcal{R}_{12}$$

$$\mathcal{R}_{ij} &= \begin{pmatrix} \cos \theta_{ij} & \sin \theta_{ij} e^{-i\delta_{ij}} \\ -\sin \theta_{ij} e^{i\delta_{ij}} & \cos \theta_{ij} \end{pmatrix}$$

Matter effect inside the Earth

- $\Delta m^2 \sim eV^2$ → resonance oscillation at TeV
- Earth's mantle/core density difference → enhanced osc. amplitude

8/12 Brown

Propagation – layered Model

- `Sliced' PREM model: 100 density layers sufficient for >100 GeV (anti)neutrinos --- tested against numerical D.E.s
- Near resonance transition rate strongly affected by osc. phase at mantle/core boundaries

An informative angular distribution

- Impact of increases with the zenith angle
- Higher energy cuts magnify deviation from standard 3 gen.

Contained and 'up-going' events

- Different v energy dependence
- Separate A_{eff} for v and \overline{v} ?

Contained: track starts inside detector
$$\frac{d\phi_{\mu}^{con.}}{dE_{\mu}d\Omega} = V_{eff.}(E_{\mu},\theta_z) \int_{E_{\mu}}^{E_{\nu}^{max}} dE_{\nu} \sum_{i=\nu,\bar{\nu}} n_{n/p} \frac{d\sigma_i^{n/p}(E_{\nu},E_{\mu})}{dE_{\mu}} dE_{\mu}$$

$$\cdot \left(P_{12}(E_{\nu}) \frac{d\phi_{\nu}^{i,\nu_{e}}}{dE_{\nu}} + P_{22}(E_{\nu}) \frac{d\phi_{\nu}^{i,\nu_{\mu}}}{dE_{\nu}} \right) ,$$

"Up-going": track initiates outside detector

$$\frac{d\phi_{\mu}^{up}}{dE_{\mu}d\Omega} = A_{\mu}(E_{\mu}, \theta_{z}) \int_{0}^{\infty} dz \int_{E_{\mu}}^{E_{\nu}} dE_{\mu}^{0} P(E_{\mu}^{0}, E_{\mu}; z)
\cdot \int_{E_{\mu}}^{E_{\nu}^{max}} dE_{\nu} \sum_{i=\nu,\bar{\nu}} n_{n} \sqrt{\frac{d\sigma_{i}^{n/p}(E_{\nu}, E_{\mu}^{0})}{dE_{\mu}^{0}}} \left(P_{12}(E_{\nu}) \frac{d\phi_{\nu}^{i,\nu_{e}}}{dE_{\nu}} + P_{22}(E_{\nu}) \frac{d\phi_{\nu}^{i,\nu_{\mu}}}{dE_{\nu}} \right)$$

Muon stopping distance increases with E_{μ} :

"Up-going" event more sensitive to the high energy part of v_{μ} spectrum

Constraint from Angular Distributions

S. Razzaque, A. Smirnov (2011)

0.7 1000 Events, $E_u > 1$ TeV

-0.4

 $\cos\theta_z$

-0.2

0.0

• Comparing the "scaled-to-MC" angular distributions:

 $0.07 \cdot 10^5$ Events, $E_u > 100$ GeV

-0.8

-0.2

Scaled N_µ/bin

6000

-0.8

-0.6

 $\cos\theta_2$

-0.2

-0.4

 $\cos\theta_z$

40-string atm. data (2008-2009)

8/12 Brown

Vertical & horizontal bins may have large systematics

5 year data?

IC contained

*IC "up-going"

Summary

- A generic test of $\Delta m^2 \sim eV^2$ oscillation at IceCube
- Visibly large deviation (from 3 gen.) in the muon angular distribution
- Improved statistics will offer strong constraint by future IC data release

Stay tuned!