Probing scalar mesons below and above 1 GeV

Presented by:

Amir Fariborz State University of New York Institute of Technology

In collaboration with:

R. Jora, J. Schechter, N. Shahid

Main refs.:

A.F., R. Jora, J. Schechter, Phys. Rev. D 79, 074014 (2009) A.F., R. Jora, J. Schechter, M.N. Shahid, arXiv:1106.4835v1[hep-ph] Related refs.:

A.F., R. Jora, J. Schechter, PRD 72, 034001 (2005); PRD 76, 014011 (2007); PRD 76, 114001 (2007); PRD 77, 034006 (2008); PRD 77, 094004 (2008)

D. Black, A.F., J. Shechter, PRD 61, 074001 (2000). D. Black, A.F., S. Moussa, S. Nasri, J. Shechter, PRD 64, 014031 (2001).

<u>Outline</u>:

1) Introduction

- 2) Generalized linear sigma model framework
- 3) Results
- 4) Summary & future works

Introduction:

Scalar mesons play important roles in low - energy QCD :

- Induce spontaneous chiral symmetry breaking
- Are probes of QCD vacuum
- Are important intermediate states in low energy processes (such as $\pi\pi$, πK , $\pi\eta$ scatterings, and decays such as $\eta' \rightarrow \eta \pi \pi$, semileptonic decays of D_s ,...)

Understanding the properties of scalar mesons is known to be nontrivial:

- Some of these states are broad and therefore interfere with nearby states
- Their mass spectrum doesn't follow the conventional SU(3) multiplets

	$f_0(1500) \& f_0(1710)$: could contain high glue comp.					
	PDG : likely candidates for a $q\bar{q}$ nonet					
SS	$m[a_0(1450)] = 1474 \pm 19 \text{ MeV} > m[K_0^*(1430)] = 1425 \pm 50 \text{ MeV}$					
$0 \qquad f_0(1500) \& f_0(1710)$	$\Gamma[a, tot.]$ (1.0±0.5 (PDG)					
1 $a_0(1450)$	$\frac{\Gamma[\mathcal{U}_0]}{\Gamma[K_0^* \to \pi K]} = \begin{cases} 1.5 & \text{SU}(3) \end{cases}$					
$/2$ $K^{*}(1430)$	$\Gamma[a_0 \to K\overline{K}] \left[0.88 \pm 0.23 (\text{PDG}) \right]$					
$n = m_0 (1130)$	$\overline{\Gamma[a_0 \to \pi \eta]} = \begin{cases} 0.55 & \text{SU}(3) \end{cases}$					
$J_0(13/0)$	$\Gamma[a_0 \rightarrow \pi \eta'] = \int 0.35 \pm 0.16 (\text{PDG})$					
	$\overline{\Gamma[a_0 \to \pi \eta]} = \begin{cases} 0.16 & \text{SU}(3) \end{cases}$					

Ma

I =

I =

I = 1

I =

I = 0

I=1

I = 0

)&1	$f_0(980)\&a_0(980)$	
/2	$K^*(800) \leftrightarrow k$	
)	$f_0(600) \leftrightarrow \sigma$	

Ideally mixed $q\bar{q}$ nonetVector meson nonetI = 0 \leftrightarrow $s\bar{s}$ $\psi(1020)$ I = 1/2 \leftrightarrow $n\bar{s}$ $K^*(892)$ I = 0&1 \leftrightarrow $n\bar{n}$ $\omega(776)\&\rho(783)$

Ideally mixed $qq\overline{q}\overline{q}$ nonet (MIT bag model, Jaffe, 1977) $I = 0 \& 1 \iff ns\overline{n}\overline{s}$ $I = 1/2 \iff nn\overline{n}\overline{s}$ $I = 0 \iff nn\overline{n}\overline{n}$

Generalized Linear Sigma Model Framework:

The two chiral nonets are defined in terms of scalar and pseudoscalar nonets:

 $M = S + i\phi$ $M' = S' + i\phi'$

Under $SU(3)_L \times SU(3)_R \times U(1)_A$:

$$M \to e^{2i\nu} U_{\rm L} M U_{\rm R}^{\dagger} \qquad \qquad M' \to e^{-4i\nu} U_{\rm L} M' U_{\rm R}^{\dagger}$$

At the quark level:

$$M_{a}^{\dot{b}} = (q_{bA})^{\dagger} \gamma_{4} \frac{1 + \gamma_{5}}{2} q_{aA}$$

$$\begin{pmatrix} \epsilon_{acd} \epsilon^{\dot{b}\dot{e}\dot{f}} (M^{\dagger})_{\dot{e}}^{c} (M^{\dagger})_{\dot{f}}^{d} \\ (L^{gA})^{\dagger} R^{fA} \\ (L^{gA})^{\dagger} R^{fA} \\ (L^{gA})^{\dagger} R^{fA} \\ (L^{g}_{\mu\nu,AB})^{\dagger} R^{f}_{\mu\nu,AB} \\ \begin{pmatrix} L^{g}_{\mu\nu,BA} = \epsilon^{gab} q_{aA}^{T} C^{-1} \frac{1 - \gamma_{5}}{2} q_{bB} \\ R^{\dot{g}E} = \epsilon^{\dot{g}\dot{a}\dot{b}} \epsilon^{EAB} q_{\dot{a}A}^{T} C^{-1} \frac{1 - \gamma_{5}}{2} q_{bB} \\ R^{\dot{g}}_{\mu\nu,BA} = \epsilon^{gab} q_{aA}^{T} C^{-1} \sigma_{\mu\nu} \frac{1 + \gamma_{5}}{2} q_{bB} \\ R^{\dot{g}}_{\mu\nu,BA} = \epsilon^{\dot{g}\dot{a}\dot{b}} q_{\dot{a}A}^{T} C^{-1} \sigma_{\mu\nu} \frac{1 - \gamma_{5}}{2} q_{bB} \\ R^{\dot{g}}_{\mu\nu,BA} = \epsilon^{\dot{g}\dot{a}\dot{b}} q_{\dot{a}A}^{T} C^{-1} \sigma_{\mu\nu} \frac{1 - \gamma_{5}}{2} q_{bB} \\ R^{\dot{g}}_{\mu\nu,BA} = \epsilon^{\dot{g}\dot{a}\dot{b}} q_{\dot{a}A}^{T} C^{-1} \sigma_{\mu\nu} \frac{1 - \gamma_{5}}{2} q_{bB} \\ R^{\dot{g}}_{\mu\nu,BA} = \epsilon^{\dot{g}\dot{a}\dot{b}} q_{\dot{a}A}^{T} C^{-1} \sigma_{\mu\nu} \frac{1 - \gamma_{5}}{2} q_{bB} \\ R^{\dot{g}}_{\mu\nu,BA} = \epsilon^{\dot{g}\dot{a}\dot{b}} q_{\dot{a}A}^{T} C^{-1} \sigma_{\mu\nu} \frac{1 - \gamma_{5}}{2} q_{bB} \\ R^{\dot{g}}_{\mu\nu,BA} = \epsilon^{\dot{g}\dot{a}\dot{b}} q_{\dot{a}A}^{T} C^{-1} \sigma_{\mu\nu} \frac{1 - \gamma_{5}}{2} q_{bB} \\ R^{\dot{g}}_{\mu\nu,BA} = \epsilon^{\dot{g}\dot{a}\dot{b}} q_{\dot{a}A}^{T} C^{-1} \sigma_{\mu\nu} \frac{1 - \gamma_{5}}{2} q_{bB} \\ R^{\dot{g}}_{\mu\nu,BA} = \epsilon^{\dot{g}\dot{a}\dot{b}} q_{\dot{a}A}^{T} C^{-1} \sigma_{\mu\nu} \frac{1 - \gamma_{5}}{2} q_{bB} \\ R^{\dot{g}}_{\mu\nu,BA} = \epsilon^{\dot{g}\dot{a}\dot{b}} q_{\dot{a}A}^{T} C^{-1} \sigma_{\mu\nu} \frac{1 - \gamma_{5}}{2} q_{bB} \\ R^{\dot{g}}_{\mu\nu,BA} = \epsilon^{\dot{g}\dot{a}\dot{b}} q_{\dot{a}A}^{T} C^{-1} \sigma_{\mu\nu} \frac{1 - \gamma_{5}}{2} q_{bB} \\ R^{\dot{g}}_{\mu\nu,BA} = \epsilon^{\dot{g}\dot{a}\dot{b}} q_{\dot{a}A}^{T} C^{-1} \sigma_{\mu\nu} \frac{1 - \gamma_{5}}{2} q_{bB} \\ R^{\dot{g}}_{\mu\nu,BA} = \epsilon^{\dot{g}\dot{a}\dot{b}} q_{\dot{a}A}^{T} C^{-1} \sigma_{\mu\nu} \frac{1 - \gamma_{5}}{2} q_{bB} \\ R^{\dot{g}}_{\mu\nu,BA} = \epsilon^{\dot{g}\dot{a}\dot{b}} q_{\dot{a}A}^{T} C^{-1} \sigma_{\mu\nu} \frac{1 - \gamma_{5}}{2} q_{bB} \\ R^{\dot{g}}_{\mu\nu,BA} = \epsilon^{\dot{g}\dot{a}\dot{b}} q_{\dot{a}A}^{T} C^{-1} \sigma_{\mu\nu} \frac{1 - \gamma_{5}}{2} q_{bB} \\ R^{\dot{g}}_{\mu\nu,BA} = \epsilon^{\dot{g}\dot{a}\dot{b}} q_{\dot{a}A}^{T} C^{-1} \sigma_{\mu\nu} \frac{1 - \gamma_{5}}{2} q_{bB} \\ R^{\dot{g}}_{\mu\nu,BA} = \epsilon^{\dot{g}\dot{a}\dot{b}} q_{\dot{a}A}^{T} C^{-1} \sigma_{\mu\nu} \frac{1 - \gamma_{5}}{2} q_{b} \\ R^{\dot{g}}_{\mu\nu,BA} = \epsilon^{\dot{g}\dot{a}\dot{b}} q_{\mu\nu} q_$$

Lagrangian:

$$\mathcal{L} = -\frac{1}{2} \operatorname{Tr} \left(\partial_{\mu} M \partial_{\mu} M^{\dagger} \right) - \frac{1}{2} \operatorname{Tr} \left(\partial_{\mu} M' \partial_{\mu} M'^{\dagger} \right) - V_0 \left(M, M' \right) - V_{SB}$$

$$V_0 \text{ is invariant under } SU(3)_L \times SU(3)_R, \text{ but not } U(1)_A$$

$$V_{SB} \text{ is the symmetry breaking term}$$

Approach 1:

Without making a specific choice for chiral invariant part of V_0 and with modeling :

(i)	axial anomaly		(i)	π , K, η contain small four - quak components
{ii)	$V_{\scriptscriptstyle SB}$	\Rightarrow	{ii)	κ contains large four - quark component
(iii)	condensates		(iii)	no predictions for : a_0 and f_0

[A.F., R. Jora, J. Schechter, PRD 72, 034001 (2005)]

Approach 2:

Making a specific choice for chiral invariant part of V_0 and modeling :

- i) ii) iii)
- i) Pseudoscalars contain small four quak components
- axial anomaly
 V_{SB} i)Pseudoscalars contain smart I V_{SB} \Rightarrow ii)Scalars contain large four quark components
Predictions for low energy processes such
 $\pi\pi, \pi K$ scatterings Predictions for low - energy processes such as

[A.F., R. Jora, J. Schechter, PRD 76, 014011 (2007); PRD 76, 114001 (2007); PRD 77, 034006 (2008); PRD 77, 094004 (2008); PRD 79, 074014 (2009);...]

N = number of quark or antiquark lines at each vertex = $2 \times \text{number of } M \text{ or } M^+ + 4 \times \text{number of } M' \text{ or } M'^+$

As our first step, we consider terms up to N = 8 with single Tr :

C. Rosenzweig, J. Schechter and G. Trahern, Phys. Rev. **D21**, 3388 (1980)
 J. Schechter, Phys. Rev. **D21**, 3393 (1980)

Terms in V_{SB} that are linear in flyor symmetry breaking matrix $A = diag.(A_1, A_2, A_3)$ and dim. ≤ 4 are :

$$\begin{split} V_{SB} &= + \frac{k_1[\text{Tr}(AM) + \text{h.c.}] + k_2[\text{Tr}(AM') + \text{h.c.}]}{k_3[\text{Tr}(AMM^{\dagger}M) + \text{h.c.}] + k_4[\text{Tr}(AMM'^{\dagger}M') + \text{h.c.}]} \\ &+ \frac{k_5[\text{Tr}(AMM^{\dagger}M') + \text{h.c.}] + k_6[\text{Tr}(AMM'^{\dagger}M) + \text{h.c.}]}{k_7[\text{Tr}(AM'M'^{\dagger}M') + \text{h.c.}] + k_8[\text{Tr}(AM'M^{\dagger}M) + \text{h.c.}]} \\ &+ \frac{k_9[\text{Tr}(AM'M'^{\dagger}M') + \text{h.c.}] + k_{10}[\text{Tr}(AM'M^{\dagger}M') + \text{h.c.}]}{k_{10}[\text{Tr}(AM) + \text{h.c.}]\text{Tr}(MM^{\dagger})} \\ &+ \frac{k_{11}[\text{Tr}(AM) + \text{h.c.}]\text{Tr}(MM^{\dagger})}{k_{12}[\text{Tr}(AM) + \text{h.c.}]\text{Tr}(MM'^{\dagger})} \\ &+ \frac{k_{13}[\text{Tr}(AM) + \text{h.c.}]\text{Tr}(MM'^{\dagger})}{k_{13}[\text{Tr}(AM) \text{Tr}(MM'^{\dagger}) + \text{h.c.}] + k_{14}[\text{Tr}(AM)\text{Tr}(M'M^{\dagger}) + \text{h.c.}]} \\ &+ \frac{k_{15}[\text{Tr}(AM') + \text{h.c.}]\text{Tr}(MM^{\dagger})}{k_{16}[\text{Tr}(AM') + \text{h.c.}]\text{Tr}(MM'^{\dagger})} \\ &+ \frac{k_{16}[\text{Tr}(AM') + \text{h.c.}]\text{Tr}(MM'^{\dagger})}{k_{16}[\text{Tr}(AM') \text{Tr}(M'M'^{\dagger}) + \text{h.c.}]} + \frac{k_{18}[\text{Tr}(AM')\text{Tr}(M'M^{\dagger}) + \text{h.c.}]}{k_{19}A_a^b\epsilon_{bcd}\epsilon^{aef}M_e^cM_f^d + \text{h.c.}} \\ &+ \frac{k_{20}A_a^b\epsilon_{bcd}\epsilon^{aef}M_e^cM'_f^d + \text{h.c.}}{k_{21}A_a^b\epsilon_{bcd}\epsilon^{aef}M_e^cM'_f^d + \text{h.c.}} \end{split}$$

$$V = -c_2 \operatorname{Tr}(MM^{\dagger}) + c_4^a \operatorname{Tr}(MM^{\dagger}MM^{\dagger}) + d_2 \operatorname{Tr}(M'M'^{\dagger}) + e_3^a (\epsilon_{abc} \epsilon^{def} M_d^a M_e^b M_f'^c + h.c.) + c_3 \left[\gamma_1 \ln(\frac{\det M}{\det M^{\dagger}}) + (1 - \gamma_1) \ln \frac{\operatorname{Tr}(MM'^{\dagger})}{\operatorname{Tr}(M'M^{\dagger})} \right]^2 - 2 \operatorname{Tr}(AS)$$

Assuming isospin symmetry:
$$\begin{cases} A = diag.(A_1, A_2, A_3) & \text{with} : A_1 = A_2 \neq A_3 \\ \langle S_a^a \rangle = \alpha_a & \text{with} : \alpha_1 = \alpha_2 \neq \alpha_3 \\ \langle S_a'^a \rangle = \beta_a & \text{with} : \beta_1 = \beta_2 \neq \beta_3 \end{cases}$$

All together there are 12 unknown parameters: $c_2, c_4^a, d_2, e_3^a, c_3, \gamma_1, \alpha_1, \alpha_3, \beta_1, \beta_3, A_1, A_3$

$$m[a_{0}(980)] = 984.7 \pm 1.2 \text{ MeV}$$

$$m[a_{0}(1450)] = 1474 \pm 19 \text{ MeV}$$

$$m[\pi(1300)] = 1300 \pm 100 \text{ MeV}$$

$$m_{\pi} = 137 \text{ MeV}$$

$$F_{\pi} = 131 \text{ MeV}$$

$$A_{3} / A_{1} \approx 20 \rightarrow 30$$

$$\det M_{\eta}^{2} = (\det M_{\eta}^{2})_{EXP}$$

$$\operatorname{Tr} M_{\eta}^{2} = (\operatorname{Tr} M_{\eta}^{2})_{EXP}$$

Miminum conds.
$$\begin{cases} \left\langle \frac{\partial V}{\partial S_1^1} \right\rangle = 0 \\ \left\langle \frac{\partial V}{\partial S_3^3} \right\rangle = 0 \\ \left\langle \frac{\partial V}{\partial S_1^{\prime 1}} \right\rangle = 0 \\ \left\langle \frac{\partial V}{\partial S_1^{\prime 1}} \right\rangle = 0 \end{cases}$$

Exp. Inputs

$$\begin{split} (M_{\pi}^{2}) &= \begin{bmatrix} 4 e_{3}^{a} \beta_{3} - 2 c_{2} + 4 c_{4}^{a} \alpha_{1}^{2} & 4 e_{3}^{a} \alpha_{3} \\ 4 e_{3}^{a} \alpha_{3} & 2 d_{2} \end{bmatrix} \\ (M_{K}^{2}) &= \begin{bmatrix} 4 e_{3}^{a} \beta_{1} - 2 c_{2} + 4 c_{4}^{a} \alpha_{1}^{2} - 4 c_{4}^{a} \alpha_{1} \alpha_{3} + 4 c_{4}^{a} \alpha_{3}^{2} & 4 e_{3}^{a} \alpha_{1} \\ 4 e_{3}^{a} \alpha_{1} & 2 d_{2} \end{bmatrix} \\ (X_{a}^{2}) &= \begin{bmatrix} -4 e_{3}^{a} \beta_{3} - 2 c_{2} + 12 c_{4} \alpha_{1}^{2} & -4 e_{3}^{a} \alpha_{3} \\ -4 e_{3} \alpha_{3} & 2 d_{2} \end{bmatrix} \\ (X_{\kappa}^{2}) &= \begin{bmatrix} -4 e_{3}^{a} \beta_{1} - 2 c_{2} + 4 c_{4} \alpha_{1}^{2} + 4 c_{4}^{a} \alpha_{1} \alpha_{3} + 4 c_{4} \alpha_{3}^{2} & -4 e_{3}^{a} \alpha_{1} \\ -4 e_{3}^{a} \alpha_{1} & 2 d_{2} \end{bmatrix} \\ X_{0}^{2}) &= \begin{bmatrix} 4 e_{3}^{a} \beta_{3} - 2 c_{2} + 12 c_{4}^{a} \alpha_{1}^{2} & 4 \sqrt{2} e_{3}^{a} \beta_{1} & 4 e_{3}^{a} \alpha_{3} & 4 \sqrt{2} e_{3}^{a} \alpha_{1} \\ -4 e_{3}^{a} \alpha_{1} & -2 c_{2} + 12 c_{4}^{a} \alpha_{3}^{2} & 4 \sqrt{2} e_{3}^{a} \alpha_{1} & 0 \\ 4 \sqrt{2} e_{3}^{a} \beta_{1} & -2 c_{2} + 12 c_{4}^{a} \alpha_{3}^{2} & 4 \sqrt{2} e_{3}^{a} \alpha_{1} & 0 \\ 4 e_{3}^{a} \alpha_{3} & 4 \sqrt{2} e_{3}^{a} \alpha_{1} & 2 d_{2} & 0 \\ 4 \sqrt{2} e_{3}^{a} \alpha_{1} & 0 & 0 & 2 d_{2} \end{bmatrix} \end{split}$$

$$\begin{pmatrix} M_{\eta}^{2} \end{pmatrix}_{11} = \left(16 c_{4} \alpha_{1}^{6} \beta_{1}^{2} + 16 c_{4} \alpha_{1}^{5} \alpha_{3} \beta_{1} \beta_{3} + 4 c_{4} \alpha_{1}^{4} \alpha_{3}^{2} \beta_{3}^{2} - 16 e_{3} \alpha_{1}^{4} \beta_{1}^{2} \beta_{3} - 16 e_{3} \alpha_{1}^{3} \alpha_{3} \beta_{1} \beta_{3}^{2} - 4 e_{3} \alpha_{1}^{2} \alpha_{3}^{2} \beta_{3}^{3} - 8 c_{2} \alpha_{1}^{4} \beta_{1}^{2} - 8 c_{2} \alpha_{1}^{3} \alpha_{3} \beta_{1} \beta_{3} - 2 c_{2} \alpha_{1}^{2} \alpha_{3}^{2} \beta_{3}^{2} - 16 c_{3} \gamma_{1}^{2} \alpha_{1}^{2} \beta_{1}^{2} - 32 c_{3} \gamma_{1}^{2} \alpha_{1} \alpha_{3} \beta_{1} \beta_{3} - 16 c_{3} \gamma_{1}^{2} \alpha_{3}^{2} \beta_{3}^{2} - 32 c_{3} \gamma_{1} \alpha_{1}^{2} \beta_{1}^{2} - 32 c_{3} \gamma_{1} \alpha_{1} \alpha_{3} \beta_{1} \beta_{3} - 16 c_{3} \alpha_{1}^{2} \beta_{1}^{2} - 32 c_{3} \gamma_{1} \alpha_{1} \alpha_{3} \beta_{1} \beta_{3} - 16 c_{3} \alpha_{1}^{2} \beta_{3}^{2} - 32 c_{3} \gamma_{1} \alpha_{1}^{2} \beta_{1}^{2} - 32 c_{3} \gamma_{1} \alpha_{1} \alpha_{3} \beta_{1} \beta_{3} - 16 c_{3} \alpha_{1}^{2} \beta_{1}^{2} \right) / \left(\left(2 \alpha_{1} \beta_{1} + \alpha_{3} \beta_{3} \right)^{2} \alpha_{1}^{2} \right) \right)$$

Results:

Predictions

Inputs

						-			
	m (GeV)	$ar{q}ar{q}qq\%$	$ar{q}q\%$	State		$m \; (\text{GeV})$	$ar{q}ar{q}qq\%$	$ar{q}q\%$	State
	0.984	76	24	a		0.137	15	85	π
EXP.	1.474	24	76	a'	EXP.	1.215	85	15	π'
0.676	1.067	92	8	κ	0.496	0.515	14	86	K
1.425	1.624	8	92	κ'	1.460	1.195	86	14	K'
0.4-1.2	0.742	60	40	f_1	0.547	0.553	11	89	η_1
0.980	1.085	95	5	f_2	0.958	0.982	22	78	η_2
1.2 - 1.5	1.493	.37	63	f_3	1.294	1.225	68	32	η_3
1.505	1.783 ?	7	93	f_4	?]1.410	1.794	99	1	η_4
1.720					1.476				
					[1.617]				
	Nidth (MeV)	(MeV)	Mass	Pole					
	455	83	4	1	Receive corrections				
	154)12	10	2	due to the unitarization of				
	35	082	10	3	□ □ scattering amplitude				
	2.1	663	16	4					
	$ \begin{array}{r} 455 \\ 154 \\ 35 \\ 2.1 \\ \end{array} $	83 012 082 663	$ \begin{array}{c} 4\\ 10\\ 10\\ 16\\ \end{array} $	$ \begin{array}{c} 1\\ 2\\ 3\\ 4 \end{array} $	ation of amplitude	orrections e unitariza scattering	eceive co ue to the	Re du	

K-matrix unitarization of prediction for real part of I=J=0 **D** scattering amplitue

Summary:

The generalized linear sigma model seems to provide a consistent picture for the mixing of scalar and pseudoscalar mesons below 2 GeV

Scalar meson content is predicted to be reverse of the pseudoscalar meson Contant

Future works:

Pi K and pi eta scatterings

Eta prime decays

Inclusion of glueballs