A Search for the Higgs Boson in the $H \rightarrow \gamma\gamma$ Channel with CMS

Christopher Palmer on behalf of the CMS Collaboration

University of California - San Diego

9 August 2011
$H \rightarrow \gamma\gamma$ in a Nutshell

- Sharp signal peak
 - need great resolution
- Smoothly declining background
 - Irreducible - 2 real γ's
 - Reducible - 1,2 fake γ's
 - Electrons faking γ's ($Z \rightarrow e^+ e^-$)
 - Jets faking γ's ($\pi_0 \rightarrow \gamma\gamma$)

![Graph showing signal and background distributions](image)

Standard Model

![Graph showing branching ratios](image)

Fermiophobic

![Graph showing branching ratios](image)

Chris Palmer (UCSD)

$H \rightarrow \gamma\gamma$ with CMS

9 August 2011

2 / 15
General purpose detector
Searching for Higgs, SUSY and more
Reconstructing photons (γ’s), electrons, hadronic jets and muons (μ’s)
CMS - Electromagnetic Calorimeter (ECAL)

- \(\sim 76K \) PbWO\(_4\) crystals in barrel (\(|\eta| < 1.48\)) and endcap (\(1.48 < |\eta| < 3.\))
- Design resolution \(\sim 0.5\% \) for unconverted \(\gamma \)'s with energy > 100 GeV
- Critical resolution issues
 - Calibration
 - Crystal inter-calibration - \(\pi_0 \rightarrow \gamma\gamma \)
 - Energy scale calibration - \(Z \rightarrow e^+ e^- \)
 - Transparency corrections for radiation damage
 - An integrated laser system measures the transparency of crystals
Photon Selection in Categories

- Photon Identification
 - Isolation
 - $\Sigma P_T, \text{Tracks} + \text{ECAL}$ energy + HCAL energy in hollow cone around γ
 - Cluster shape
 - Spread in η rejects $\pi_0 \rightarrow \gamma\gamma$
 - Electron veto
- Cuts are optimized in 4 photon categories
 - Barrels/endcap
 - Unconverted/converted
 - Indicated by a measure of the spread of γ's shower

- Photon Transverse Momentum (P_T)
 - $P_T^{\gamma_1} > 40$ GeV/c
 - $P_T^{\gamma_2} > 30$ GeV/c

Efficiencies vs. η_γ

CMS Simulation Preliminary

$H \rightarrow \gamma\gamma$ with CMS

9 August 2011 5 / 15
Vertex Selection

- The Pile-Up (PU) problem
 - $<N_{PU}> \sim 5.6$ vertices in our 1.09 fb^{-1}
 - Wrong vertex, wrong $\gamma\gamma$ invariant mass \rightarrow resolution loss

- Determine vertex using
 - $\sum P_T^2$ Tracks
 - Projection of tracks onto $\gamma\gamma$
 - Balance between $\gamma\gamma$ and vertex’s tracks
 - For converted γ’s use conversion-tracks to point back to vertex

- Efficiency of correct selection (within 1 cm) $\sim 83\%$ with nearly 100% efficiency at high $P_T^{\gamma\gamma}$

- From just using beamspot resolution improves by $\sim 16\%$ overall
Selection Efficiency in Data

\[Z \rightarrow e^+ e^- \] Tag and Probe
- Assume that electrons and photons have similar shower properties
- Tag with tight electron ID
- Probe with high \(E_T \) reconstructed electron
- Use associated reconstructed \(\gamma \) and apply \(\gamma \) selection

\[Z \rightarrow \mu\mu\gamma \]
- Select \(\mu \)'s and \(\gamma \) that make \(Z \)-mass
- Use to measure electron veto efficiency

Trigger Efficiencies from \(Z \rightarrow e^+ e^- \)

<table>
<thead>
<tr>
<th></th>
<th>Both photons in barrel</th>
<th>One or more in endcap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 Unconverted</td>
<td>1,2 Converted</td>
</tr>
<tr>
<td>100.00±0.00%</td>
<td>99.53±0.04%</td>
<td>100.00±0.00%</td>
</tr>
</tbody>
</table>

Selection Efficiencies from Data

<table>
<thead>
<tr>
<th>Category</th>
<th>(\epsilon_{data}) (%)</th>
<th>(\epsilon_{MC}) (%)</th>
<th>(\epsilon_{data}/\epsilon_{MC})</th>
</tr>
</thead>
<tbody>
<tr>
<td>All cuts except electron rejection (from (Z \rightarrow e^+ e^-))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>91.77±0.14</td>
<td>92.43±0.07</td>
<td>0.993±0.002</td>
</tr>
<tr>
<td>2</td>
<td>72.67±0.43</td>
<td>71.89±0.08</td>
<td>1.011±0.007</td>
</tr>
<tr>
<td>3</td>
<td>80.33±0.47</td>
<td>80.04±0.18</td>
<td>1.004±0.008</td>
</tr>
<tr>
<td>4</td>
<td>57.80±1.26</td>
<td>55.09±0.15</td>
<td>1.049±0.025</td>
</tr>
<tr>
<td>Electron rejection cut (from (Z \rightarrow \mu\mu\gamma))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>99.78±0.13</td>
<td>99.59±0.13</td>
<td>1.002±0.002</td>
</tr>
<tr>
<td>2</td>
<td>98.77±0.59</td>
<td>97.70±0.32</td>
<td>1.011±0.007</td>
</tr>
<tr>
<td>3</td>
<td>99.32±0.51</td>
<td>99.29±0.30</td>
<td>1.000±0.006</td>
</tr>
<tr>
<td>4</td>
<td>93.0±2.1</td>
<td>93.34±0.79</td>
<td>0.996±0.024</td>
</tr>
</tbody>
</table>
Resolution from $Z \rightarrow e^+ e^-$

- ECAL resolution measured from $Z \rightarrow e^+ e^-$ is applied to simulated Higgs' γ's.
- The simulated Higgs' γ's with data resolution are used in signal modeling for CL limits.

Suboptimal transparency loss corrections are primarily responsible for degraded resolution.
Event Classes Used for CL Evaluation

2 η Classes
- 2 γ’s in the barrel
- 1 or 2 γ’s in the endcap

2 Conversion Classes
- 2 Unconverted γ’s ($R_9 > 0.94$)
- 1 or 2 Converted γ’s ($R_9 < 0.94$)

2 $P_T^\gamma\gamma$ Classes
- $P_T^\gamma\gamma > 40$ GeV/c
- $P_T^\gamma\gamma < 40$ GeV/c

Fraction of selected signal and background expected in each event class.

<table>
<thead>
<tr>
<th>$P_T^\gamma\gamma$</th>
<th>Both γ’s in barrel</th>
<th>One or more in endcap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 Unconverted</td>
<td>1,2 Converted</td>
</tr>
<tr>
<td>$P_T^\gamma\gamma < 40$ GeV/c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal</td>
<td>0.209</td>
<td>0.271</td>
</tr>
<tr>
<td>Background</td>
<td>0.167</td>
<td>0.263</td>
</tr>
<tr>
<td>Signal $\sigma_{\text{effective}}$ (GeV/c2)</td>
<td>1.58</td>
<td>2.33</td>
</tr>
<tr>
<td>$P_T^\gamma\gamma > 40$ GeV/c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal</td>
<td>0.102</td>
<td>0.122</td>
</tr>
<tr>
<td>Background</td>
<td>0.043</td>
<td>0.079</td>
</tr>
<tr>
<td>Signal $\sigma_{\text{effective}}$ (GeV/c2)</td>
<td>1.37</td>
<td>2.12</td>
</tr>
</tbody>
</table>
Background Modeling

Background from data fit to 2nd order polynomial

\((100 < M_{\gamma\gamma} < 150 \text{ GeV/c}^2)\)

High \(P_T^{\gamma\gamma}\), both high \(R_9\), barrel-barrel

Low \(P_T^{\gamma\gamma}\), both high \(R_9\), barrel-barrel
Systematic Errors on the Signal

Source	**Systematics**
Photon identification efficiency | 1.0% ± 4.0%
R9 cut efficiency | 4.0% ± 6.5%
Energy resolution | 0.2% ± 0.5%
Energy scale | 0.05% ± 0.34%

applicable to individual photons

Source	**Systematics**
Integrated luminosity | 6.0%
Trigger efficiency | 1.0%
Vertex finding efficiency | 0.5%
pT>40GeV cut efficiency | 6.0%

cross sections and branching ratios

Source	**Systematics**
Gluon-gluon cross section | 12.5%(scale) 7.9%(PDF)
Fermiophobic: scale | 0.5%(VBF) 0.8%(WH) 1.6%(ZH)
Fermiophobic: PDF | 3.1%
Fermiophobic: BR | 5.0%
SM Exclusion at 95% CL

- Limits determined in two ways with consistent results
 - Modified frequentist approach (CLs) using profile likelihood
 - Bayesian method with flat prior
- Excluding between 0.06 and 0.26 pb

![Graph showing CMS preliminary $\sqrt{s} = 7$ TeV $L = 1.09$ fb$^{-1}$ results for $H \rightarrow \gamma\gamma$ with CMS]
SM Exclusion Relative to σ_{SM}

- Excluding between 1.9 and 7.0 σ_{SM}
Fermiophobic Exclusion at 95% CL

- Excluding between 0.04 and 0.18 pb
- Constraining $M_{\text{Fermiophobic}} > 111$ GeV/c2
Conclusions

- \(H \rightarrow \gamma\gamma \) Analysis
 - Photon selection in categories
 - Vertex selection (from conversions and event topology) improves resolution
 - Resolution measured from \(Z \rightarrow e^+e^- \)

- Limits
 - CL evaluation in event classes \(\rightarrow \) greater sensitivity
 - Becoming sensitive to SM Higgs (2-6 times \(\sigma_{SM}\times BR \) in 110-135 GeV range)
 - Already quite sensitive to Fermiophobic Higgs (\(M_{Fermiophobic} > 111 \) GeV)

- Outlook
 - More data!
 - Improved CMS \(\gamma\gamma \) resolution
BACKUP
Vertex ID: P^Asym_T and P^Bal_T

$P^\text{Asym}_T = \left(\frac{\sum_{\text{Tracks}} P_T - P^\gamma_\gamma}{\sum_{\text{Tracks}} P_T + P^\gamma_\gamma} \right)$

$P^\text{Bal}_T = -\left(\frac{\sum_{\text{Tracks}} P_T \cdot \frac{P^\gamma_\gamma}{|P^\gamma_\gamma|}}{\sum_{\text{Tracks}} P_T} \right)$

Simulated Mass Resolution

Chris Palmer (UCSD)
Re-weighting applied on the number of in-time pile-up events according to the number of expected number of interactions in data.
$P_T^\gamma > 40$ Fits in Data

2 high $R_9\gamma$’s

1 or 2 low $R_9\gamma$’s

2 barrel γ’s

1 or 2 endcap γ’s

Chris Palmer (UCSD)
$P_T^{\gamma\gamma} < 40$ Fits in Data

2 high $R_9\gamma$’s

1 or 2 low $R_9\gamma$’s

2 barrel γ’s

1 or 2 endcap γ’s

Chris Palmer (UCSD)

9 August 2011 5 / 13
Combined Fits from Data

CMS preliminary
$\sqrt{s} = 7$ TeV $L = 1.09$ fb$^{-1}$

All Categories Combined

- Data
- Bkg Model
- $\pm 1 \sigma$
- $\pm 2 \sigma$

Chris Palmer (UCSD)
$P_T > 40$ Resolution with Smearing

2 high $R_9\gamma$'s

1 or 2 low $R_9\gamma$'s

2 barrel γ's

1 or 2 endcap γ's
$P_T^{\gamma\gamma} < 40$ Resolution with Smearing

2 high $R_\gamma\gamma$'s

<table>
<thead>
<tr>
<th>Events / (0.35 GeV/c2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation</td>
</tr>
<tr>
<td>Parametric Model</td>
</tr>
</tbody>
</table>

CMS preliminary Simulation

- $p_T^{\gamma\gamma} < 40$ GeV
- Max(|η|) < 1.5
- Min(R_γ) > 0.94

$\sigma_{eff} = 1.58$ GeV/c2

FWHM = 2.97 GeV/c2

1 or 2 low $R_\gamma\gamma$'s

<table>
<thead>
<tr>
<th>Events / (0.35 GeV/c2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation</td>
</tr>
<tr>
<td>Parametric Model</td>
</tr>
</tbody>
</table>

CMS preliminary Simulation

- $p_T^{\gamma\gamma} < 40$ GeV
- Max(|η|) < 1.5
- Min(R_γ) > 0.94

$\sigma_{eff} = 2.33$ GeV/c2

FWHM = 4.72 GeV/c2

2 barrel γ's

1 or 2 endcap γ's
Combined Resolution with Smearing

Simulation

Parametric Model

$\sigma_{\text{eff}} = 2.40 \text{ GeV}/c^2$

FWHM = 4.23 GeV/c2

CMS preliminary

Simulation

Combined

All Categories

Events / (0.35 GeV/c2)
Limits Relative to Fermiophobic Cross Section

\[\sqrt{s} = 7 \text{ TeV} \quad L = 1.09 \text{ fb}^{-1} \]

- Observed CLs Limit
- Observed Bayesian Limit
- Median Expected CLs Limit
- ±1σ Expected CLs
- ±2σ Expected CLs

\[\sigma(H \rightarrow \gamma\gamma)_{CL} \]

Chris Palmer (UCSD)

\[H \rightarrow \gamma\gamma \text{ with CMS} \]

9 August 2011
P-Values (SM)

![Graph showing P-values for H → γγ with CMS]

- CMS preliminary
- √s = 7 TeV, L = 1.09 fb⁻¹
- LEE Not Included (~12)
- Observed
- 1xSM Higgs Median Expected
- 1xSM Higgs Single Mass 119 GeV

Graph shows the p-value (Profile Likelihood) vs. m_H (GeV/c²) with observed and expected distributions.
P-Values (Fermiophobic)

LEE Not Included (~12)
CMS preliminary
$\sqrt{s} = 7$ TeV $L = 1.09$ fb$^{-1}$

p-value (Profile Likelihood)

- Observed
- 1xFP Higgs Median Expected
- 1xFP Higgs Single Mass 113.5 GeV

m_H (GeV/c2)
CMS PAS HIG-11-010 ($H \rightarrow \gamma\gamma$ PAS)
cdsweb.cern.ch/record/1369553/files/HIG-11-010-pas.pdf

CMS PAS HIG-11-011 (Higgs combination PAS)
cdsweb.cern.ch/record/1370076/files/HIG-11-011-pas.pdf

Other public plots
https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig11010TWiki