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• Why the fourth generation?
– Baryogenesis
– Tensions within the CKM paradigm

• Current bounds on fourth generation quarks
• Could a fourth generation be discovered at the LHC
• Conclusions
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Why the Fourth Generation
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What is the Fourth Generation?

A Fourth generation of the SM

•Assume the fourth generation is 
sequential (analogous to the first 
three generations)

• The Standard Model SU(3)×SU(2) ×U(1) is the 
simplest renormalizable theory which explains (more 
or less) all the particles and interactions which have 
been seen to date.
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Sakharov’s Conditions 

In 1968 Sakharov proved that the 
CPT theorem implies the 
following three conditions are 
required for baryogenesis.

• Baryon number violation

• CP violation

• Thermal non-equilibrium

Baryon asymmetry is only 10-8 because 
all the antimatter annihilated 
99.999999% of the matter leaving 
0.000001% we have today.
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Baryogenesis with 3 Generations
• The CP violation needed to drive baryogenesis cannot be 

provided by the three generation standard model
• The main reason is that the masses of first two generations 

are so small
• All of the information about CP violation from the quark sector 

is contained in the mass matrices

• If there are only 2 generations, then there is a unique CP odd 
invariant which can be constructed from these matrices and is 
invariant under field redefinitions (Jarlskog 1987):

• Where A is the area of the unitarity triangle
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Baryogenesis with 3 Generations

• Numerically, this quantity is very small:

• This quantifies the CP violation one has access to during the 
phase transition.

• Model calculations indicate that this falls short of the needed 
level of baryogenesis by at least 10 orders of magnitude. 
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Baryogenesis with 4 Generations

• With four generations, one can construct 3 independent CP odd 
combinations of the mass matrices, one of which is proportional 
to two of the bigger masses  

• From the mass dependence, there is a huge gain over the single 
three generation invariant just from the mass dependences:

• Baryogenesis now becomes possible [W. S. Hou 2008]
• One advantage of this kind of model over CP viol. from random 

new physics is that fermion edm’s are naturally small. 
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Phase Transitions

• There is, however the issue of generating a strong 
enough phase transition.

• Naively with the current higgs mass bounds, it seems 
not to work because the cubic coupling is too small if 
mH >70GeV [e.g. Dine et. al. 2004], however this 
could change in the following ways:
– Extra higgs sector [e.g. Dine et al 2004]
– If the quark masses are on the high side, the large yukawas

could lead to the correct kind of phase transition [Carena
et. al. 2005]; this has not been proven in a lattice 
calculation. 

• Thus, SM+4 gen might be the simplest model 
explaining all experiments and baryogenesis.
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Look at unitarity relation 
for these two columns

• The coupling strength at the vertex
is given by gVij
– g is the universal weak coupling
– Vij depends on which quarks are involved
– For leptons, the coupling is just g

• The Standard Model predicts that 
VCKM is unitary.

• There is only one physical phase in 
this matrix modulo rephasing of 
rows and columns which is just the 
A factor in the Jarlskog invariant. 
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Consistency of the CKM picture
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Consistency of CKM Picture 

From Lunghi et al., arXiv:1010.6069    Similar Results in UTfitter ICHEP2010

“Gold plated” oscillation in 
B→Ks.

Rate of Bs oscillation

CP Violation in KL

Br(B→)

Determination of .
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Consistency of Sin2 Between 
Modes

From Lunghi et al., arXiv:1010.6069

Sin(2) as inferred from other 
inputs.

B→Ks and related processes
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Penguin graphs
B→Ks etc.

For More details see Soni’s talk 
in the CP section yesterday
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Current bounds on fourth 
generation quarks
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The Latest Results from CDF 

Bottom Line:

CDF Limits from Luk Talk Tuesday
• 34pb-1  mb’>361 GeV (trilepton)
• 573pb-1 (e)+ 821pb-1 ()  mt’>450 GeV (single lepton)

Previous LEP bounds
• mL>100GeV  (LEP)
• mN>90.3GeV (LEP)
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Could a fourth generation be 
discovered at the LHC
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Production of Heavy Quarks

t’

t’
g

g

Both t’ and b’ are mostly produced by gluon fusion 
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In the following we will apply the following assumptions. Note that the 
conclusions should apply more generally

1) t’-b’ Mass splitting < MW: This is motivated by oblique corrections

2) The heavier t’ has a large enough CKM (typically >10-3) with lower 
generations that it undergoes a 2 body decay. 

Atwood, Gupta, Soni arXive 1104:3874
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Decays of Heavy Quarks

Following the Assumptions on the last slide 

t’
b

W

b’ t

W
W

b

't bW
Just like a normal top
But more massive

'b tW bWW 
Assuming Vtb’ dominates so the 
top gives us an extra W

If Vcb’ is large enough then the 
final state is cW which has identical
kinematics to bW from t’ decay
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Overall Signals
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Top’ Production and Decay
Overall

 g g t t bbW W    
Observable Final States after W Decay

1 Lepton 4 jets   
2 Lepton 2 2jets     

 
qq  

Bottom’ Production and Decay
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 2  2g g b b bb W W    
Overall

Observable Final States after W Decay

1 Lepton 8 jets   
2 Lepton 6 2jets     
2 Lepton 6 2jets     

 
 

 
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Three Event Samples

• Single Lepton (SL) =1 Lepton + jets + missing PT.
– Both b’ and t’ feed into this channel
– SM3 background: largely from regular top

• Same Sign Dilepton (SSD)= l+ l+ + jets + missing PT.
– Only b’ feeds into this channel. 
– No significant SM3 background

• Opposite Sign Dilepton (OSD)= l+ l- + jets + missing PT.
– Both b’ and t’ feed into this channel
– SM3 background: largely from regular top. 
– In b’ case there are three distinct scenarios.
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Basic Cuts 

• In our event selection we use the following  cuts
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Numbers in Each Channel
In each block the numbers are   (SL, OSD, SSD)

Bottom Line: For the SL and OSD case you need to delve into the kinematics to 
pull out a signal.
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Kinematics of t’: Single Lepton

t’ /Single Lepton

t’
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W  
qq
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Overdetermined☺

Same is true of b’ pair to 
single lepton + jets
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t’ /Opposite Sign Lepton Pair
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Kinematics of t’: Opposite Sign 
Dilepton

  2 4?vp 

Solution: Use the 
approximation that the two 
quarks are at rest wrt each 
other.

Same is true of b’ pair to 
OSD  if the leptons are 
from prompt W’s (case III)
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Kinematics of b’: Oppsite Sign 
Dilepton case I

b’ /Opposite Sign Dilepton (I)
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Kinematics of b’:Oppsite Sign 
Dilepton case II

b’ /Opposite Sign Dilepton (II)
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Kinematics of b’: Same Sign 
Dilepton

b’ /Same Sign Dilepton
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Single Lepton Signal

• Both for t’ and b’

• This case is overdetermined so if you have the right 
jet partition then you can separately reconstruct 
the mass of each side of the event. 

• These two masses should be equal to each other and 
equal to the heavy quark mass. 

• Wrong jet partitions tend to fail to have equal 
reconstructed masses or do not have physical 
kinematic solutions. 
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m1 versus m2 plots

t’ case b’ case
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SL Reconstructed Mass 
Histograms

t’ case b’ case

This is the average of the two masses with the following two cuts imposed:
• The solution with the smallest mass difference is taken
• Only pairs of jets with mass ~MW must be on the same side of the event.
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Same Sign Dilepton Signal

• Only for the b’

• Little SM background so reconstruction is not 
necessary to find the signal.

• This case is critically determined so there is 
potentially a 4x ambiguity in reconstruction given 
the correct jet partition.

• Again, the incorrect jet partitions tend to give 
unphysical reconstructions. 
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Mass Distribution of SSL Signal
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SSD Reconstructed Mass 
Histograms
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Opposite Sign Dilepton Signal

• This works for both b’ and t’.

• In the  b’ case, there are three scenairos but in a 
given event, we do know which scenario applies nor 
what the jet partitioning is.

• For the best we can do is to try to reconstruct each 
event according to each scenario.

• In most cases the wrong assumption or the wrong 
partition gives unphysical solutions. 
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OSD III: The underdetermined 
case

• In this case the system is underdetermined. 
• If you “assume” that the two b’-quarks are at rest 

with each other, the system is determined and the 
reconstruction gives a reasonable approximation to 
the true value.

• The same is true for OSD case of t’.

b’-quark
OSD III

t’-quark
OSD
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OSD Signal for b’

• For each event, try to reconstruct it iterating over 
all jet partitions and all three scenarios (OSD I, II 
and III).
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Conclusions
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Conclusions

• A fourth generation can solve some problems with 
the SM 
– Baryogenesis
– CKM tensions

• Fourth generation quarks will be produced copiously 
at the LHC

• Single lepton, and Opposite sign dilepton have bad 
SM backgrounds that can potentially be managed by 
reconstruction.

• Same sign dilepton has little SM background
• The kinematics may allow us to sift through the 

combinatorial backgrounds and come up with a mass 
peak. 


