Rad-Hard ASICS for Optical Data Transmission

The Ohio State University

P. Buchholz, A. Wiese, M. Ziolkowski
Universität Siegen

OUTLINE
Introduction
Result on 4-channel Driver/Receiver with Redundancy
Design of new 12-channel Driver/Receiver with Redundancy
Summary/Conclusions
Optical data transmission preferred over copper wire links:
- optical fibers are lower in mass than copper
- higher data transmission rate over long distances (80m)
- no ground loop between front and back end electronics

Optical Transmitter: VCSEL (*vertical cavity surface-emitting laser*)
Optical Receiver: PIN diode

Can be packaged in one, four, twelve channels

Work in the radiation environment of the LHC

Several detector systems in ATLAS transmit data using optical links.
(e.g. pixel & SCT)

VCSEL: *Vertical Cavity Surface Emitting Laser diode*
VDC: *VCSEL Driver Circuit*
PIN: *Pin diode*
DORIC: *Digital Optical Receiver Integrated Circuit*
Array Optical Links

Array solution has several major advantages over a single fiber system:

- **compact**: more channels in less space
- **robust**: 12-fiber ribbon stronger than individual fiber
- **efficient**: can reserve 1 in 12 channels for redundancy instead of doubling the number of fibers for a single fiber system

VCSEL/PIN array based links are commercially available:

- 12-fiber ribbon, 12 channel VCSEL/PIN array, 10 Gb/s each
- ⇒120 GB/s!

12-channel VCSEL & PIN arrays available from several vendors

Vendors provide reliability and qualification info.

Situation better than in 2003 when implementing array based on-detector links for ATLAS pixel detector:

- We only had to fabricate 272 array-based opto-boards for 1744 pixel modules.
We designed an updated version of the VCSEL driver and PIN receiver used in the current ATLAS pixel detector.

⇒ Added redundancy

Possible applications include current ATLAS pixel detector and its upgrade IBL (insertable B-Layer) in 2013-14

Experience gained from the development/testing of new chips could help the development of on-detector array-based opto-links for high luminosity upgrades to the LHC

Submitted 1st prototype chip in Feb. 2010

process: 130 nm CMOS
VCSEL: Vertical Cavity Surface Emitting Laser diode
PIN: PiN diode

The Decoder decodes bi-phase mark encoded clock & commands

VCSEL Driver (spare)
VCSEL Driver
VCSEL Driver with pre-emphasis
VCSEL Driver with pre-emphasis
CML Driver with pre-emphasis

Decoder (40Mb/s)
Decoder (40Mb/s)
Decoder (40Mb/s)
Decoder (40/80/160/320 Mb/s, spare)

1.5 mm
PIN Receiver/Decoder

Prototype chip only.
Command Decoder Interface

Courtesy of FE-I4 of IBL

Prototype: majority voting, 3 command decoders
Production: majority voting, up to 11 command decoders

In prototype chip only
VCSEL Driver Section

Channel Select (3:0) → Set DAC → Command Write → DAC Bits (7:0) → Write Enable (3:0)

LVDS 1 LVDS 2 LVDS 3 LVDS 4

16:1 MUX

8-bit DAC
VDC 1
w/pre-emphasis

8-bit DAC
VDC 2
w/pre-emphasis

8-bit DAC
VDC 3

8-bit DAC
VDC 4 (spare)

VCSEL

input added for prototype chip only.

pre-emphasis

main amplitude
Irradiation Results

2 chips were packaged for irradiation with 24 GeV/c protons at CERN in August 2010
Each chip contains 4 channels of drivers and receivers
Total dose: 1.7×10^{15} protons/cm2

Included purely electrical tests to avoid complications from degradation of optical components
Long cables limited testing to low speed
Observe little degradation of the devices
Single Event Upset Rate

SEU hardened latches or DAC could be upset by traversing charged particles
40 latches per 4-channel chip
SEU tracked by monitoring the amplitude of the VDC drive current
13 instances (errors) of a channel steered to a wrong channel in 71 hours for chip #1
Similar upset rate in chip #2

Estimate SEU rate:
\[\sigma = 3 \times 10^{-16} \text{ cm}^2 \]
particle flux \(\sim 3 \times 10^9 \text{ cm}^{-2}/\text{year} \) @ opto-link location
SEU rate \(\sim 10^{-6}/\text{year/link} \)
Summary Of 2010 Prototype Chip

Prototyped 4-channel VCSEL driver & PIN receiver/decoder:
Incorporated experience from current opto-links by adding:
- redundancy to bypass broken PIN or VCSEL channel
- individual VCSEL current control
- power-on reset to set VCSEL current to ~ 10mA on power up

Results of tests:
- VCSEL driver can operate up to ~ 5 Gb/s with BER < 5x10^{-13}
- PIN receiver/decoder works even at low threshold
- Irradiation with 24 GeV protons to 1.7x10^{15} p/cm^2
 - Very low SEU rate in latches ~3x10^{-7}/year/link
 - Small decrease in VCSEL driver output current
Decodes 40 Mb/s bi-phase mark (BPM) signal

4 spare PIN receivers for redundancy

8 FE-I4 command decoders

- Allows remote control by voting between commands received by the 8 FE-I4 command decoders
- If one of the 8 inner PIN diodes fail
 - signal from one of the 4 redundant channel amplifier outputs can be steered to the digital portion of the failed channel
- Majority voting of the command decoder values determines the command to be executed
- Allows working control if only 2 PIN channels are alive
2011 PIN Receiver Decoder Chip

Submitted May 2011
size: 6.5 mm x 1.6 mm

8 X DORIC

Spare PIN amplifiers

600 µm x 900 µm control logic

DLL + command decoder
+ LVDS driver

Spare PIN amplifiers

600 µm x 900 µm voltage regulator
2.5 V ⇔ 1.5 V

Submitted May 2011
size: 6.5 mm x 1.6 mm

8 X DORIC

Spare PIN amplifiers

600 µm x 900 µm control logic

DLL + command decoder
+ LVDS driver

Spare PIN amplifiers

600 µm x 900 µm voltage regulator
2.5 V ⇔ 1.5 V
2011 PIN Receiver Decoder Chip

Diagram showing the components and connections of the 2011 PIN Receiver Decoder Chip.
Designed for 8 channel operation up to 5 Gb/s
4 spare VCSEL driver outputs
Receives serial data from PIN receiver/decoder (command decoder vote) for configuration
If one of the 8 inner VCSELs fail
⇒ the data signal from the detector can be steered to any of the spare VCSELs
8 bit DAC for remote control of individual VCSEL current
Submitted May 2011
size: 1.5 mm x 4.5 mm
2011 VCSEL Driver Chip

Clock Data Load

Lines from DORIC

Serial Receiver

Logic

DAC VDC Spare 1
DAC VDC Spare 2
DAC VDC 1
DAC VDC 2
DAC VDC 3
DAC VDC 4
DAC VDC 5
DAC VDC 6
DAC VDC 7
DAC VDC 8
DAC VDC Spare 3
DAC VDC Spare 4

LVDS 1
LVDS 2
LVDS 3
LVDS 4
LVDS 5
LVDS 6
LVDS 7
LVDS 8

Switch/Mux
Summary/Conclusions

Our 2010 4-channel driver/receiver chips with redundancy and other improvements work well.

12-channel driver/receiver chips with redundancy submitted in May 2011

Will irradiate chips with 24 GeV protons in September 2011

Will Submit 4-channel driver/receiver compatible with high luminosity-LHC in 2012.
VCSEL Driver with Pre-Emphasis

Pre-emphasis working with tunable width and height

160 Mb/s
Recovered Clock/Data

Decoder recovers clock & data from bi-phase mark input stream

Decoded clock

Decoded data

320 Mb/s
Power-on reset circuit

In the present pixel detector an open control line disables 6 opto-links

Prototype chip has a power-on reset circuit

chips will power up with several mA of VCSEL current

Test port

can steer signal received to spare VDC/VCSEL
can set DAC to control individual VCSEL currents

All 4 channels run error free at 5 Gb/s

includes the spare with signal routed from the other inputs