Search for $t\bar{t}$ resonances with ATLAS Detector

Venkat Kaushik
on behalf of ATLAS Collaboration
University of Arizona
Division of Particles and Fields of APS
Aug 10 2011

ATLAS-CONF-2011-087
http://cdsweb.cern.ch/record/1351495?
Outline

- Physics Motivation
- Logistics
- Data/MC Samples, Selection Criteria
- Mass Reconstruction Methods
- QCD Background Estimate
- Data / MC Comparison
- Systematic Uncertainties
- Limits
Physics Motivation

• Top is the heaviest of known elementary particles
• Top resonances are predicted by several models
 ▪ **Sequential heavy Z’** [narrow, Γ=0.03M]
 ▪ SM Z boson-like [except mass which is a free parameter]
 ▪ **Topcolor Z’$
\not{t}$** [narrow, Γ=1.2%M but large $\sigma \times$ BR]
 ▪ Z' couples strongly to 3rd generation quarks, with no coupling to leptons [leptophobic scenario]
 ▪ **Randall-Sundrum (RS) graviton G*** [narrow, Γ <0.01M]
 ▪ Only G^* is allowed to propagate in extra-dimensions
 ▪ resonance mass and coupling strength are free parameters
 ▪ **Kaluza-Klein gluon g_{kk}** in RS models [wide]
Benchmark Scenarios

• Topcolor Z' (narrow)
 ▪ Chosen based on current experimental sensitivity
 ▪ Leptophobic **Model IV** ($f_1 = 1$, $f_2 = 0$), $\Gamma = 1.2\% \, M_{Z'}$

• Kaluza-Klein gluon (wide) from **RS Models**
 ▪ Strong coupling to top quark ($g_L = 1.0$, $g_R = 4.0$)
 ▪ KK gluon primarily decays into top pairs
 ▪ Signal can be interpreted as evidence of extra dimensions

• Previous Searches
 ▪ CDF and DØ exclude masses below $m = 900, 820$ GeV
 ▪ CMS (recent result in Moriond 2011)
Top Pair: Semi-leptonic Final State

- 1 lepton [electron or muon] \textbf{no tau}
- missing transverse energy
- 1 jet from leptonic top
- 3 jets from hadronic top, at least one b-tagged jet
- + additional jets from ISR/FSR

- Select good high pT lepton
- Large missing transverse energy
- Four (or more) good jets
- At least one of the jets identified as a b-jet
- Reconstruct ttbar invariant mass [Mass reconstruction methods]
• Using 200 pb\(^{-1}\) of collider data in 2011 by LHC
 - Correlates to data collected with all ATLAS subsystems operational and stable beam conditions
 - Uncertainty on luminosity (2010 estimate of 4.5%)
• Single lepton triggers used
 - Electron (threshold of 20 GeV) plateau at 25 GeV
 - Muon (threshold of 18 GeV) plateau at 20 GeV
Simulation - Signal

- Resonance Signal \([Z' \rightarrow \text{ttbar}]\)
 - **TopColor [Pythia]**

Mass [GeV]	400	500	600	700	800	900	1000
\(\sigma \times \text{BR (pb)}\)	37.8	20.5	10.0	5.0	2.8	1.6	1.0

 - **RS G* [Pythia]** \(k/M_{Pl} = 0.1\)

Mass [GeV]	500	600	700	800	900	1000	1300
\(\sigma \times \text{BR (pb)}\)	6.32	3.14	1.53	0.77	0.39	0.21	0.004

 - **KK gluons from RS models [MADGRAPH + Pythia]**

Mass [GeV]	500	700	1000	1500
\(\sigma \times \text{BR (pb)}\)	56	17	3.4	0.4

 - **QBH (t, anti-t) [BLACKMAX]**
 - \(N = 6\) extra dimensions, simplest 2 body final state
 - \(M_{\text{threshold}} = 0.75\) (24% \(tt\)), 2.5 (38% \(tt\)) TeV
Simulation – EW Background

- ttbar [MC@NLO + Herwig/Jimmy]
 - 80.2 pb @ 7 TeV, KF=1.11

- EW single-top
 - s- (1.4 pb) and t- (21.5 pb) channels, Wt (14.6 pb)

- W+jets, Z+jets [Alpgen + Herwig/Jimmy]
 - 0-4Np exclusive, >=5Np inclusive KF=1.22 for all

- Diboson (Herwig + Jimmy)
 - WW (11.75 x 1.52), WZ (3.43 x 1.58), ZZ (0.98 x 1.2) [pb]
Event/Object Selection Criteria

• Isolated lepton with high transverse momentum
 ▪ Electron \(p_T > 25 \text{ GeV} \), Muon \(p_T > 20 \text{ GeV} \)

• Missing Transverse Energy (MET)
 ▪ Lepton+MET transverse mass \(> 25 \text{ GeV} \)
 ▪ MET \(> 35 \text{ GeV} \)

• Jets \(p_T > 25 \text{ GeV} \)
 ▪ Four (or more) calibrated jets, Anti-Kt (0.4 radius)

• B-tag – used identify b quark from top decay
 ▪ Secondary vertex tagger with 50% b-jet identification efficiency and good rejection rate for light jets
QCD Background

• Data-driven estimate for QCD background estimate
 ▪ Jet Electron / Anti-electron methods
 ▪ Jet triggered sample, require highly EM jet with associated tracks – to model the fake electron
 ▪ Electron triggered sample, electron fails quality requirement
• Templates are fitted to selected data in to obtain the QCD fractions.
Mass Reconstruction Methods - I

• Four hardest Jets [Simple method]
 ▪ 4 highest pT jets assumed to come from ttbar decay
 ▪ Solve for neutrino longitudinal momentum
 ▪ Choose smaller of the two solutions
 ▪ Impose W-boson mass constraint
 ▪ Ensure discriminant of quadratic equation is null
Mass Reconstruction Methods - II

- dRmin method [Reduce tails in mass spectrum]
 - Attempts to reduce long non-gaussian tails in mass resolution which is dominated by ISR/FSR
 - Among 4 leading good-jets, remove a jet that is close to a lepton or a jet satisfying \(\Delta R_{\text{min}} > 2.5 - 0.015m_j \)

![Data from ATLAS simulation](image.png)
Event Yields – Data/MC

<table>
<thead>
<tr>
<th></th>
<th>Electron channel</th>
<th>Muon channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t\bar{t}$</td>
<td>724</td>
<td>988</td>
</tr>
<tr>
<td>Single top</td>
<td>36</td>
<td>50</td>
</tr>
<tr>
<td>W+jets</td>
<td>93</td>
<td>172</td>
</tr>
<tr>
<td>Z+jets</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Diboson</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total MC Background</td>
<td>861</td>
<td>1220</td>
</tr>
<tr>
<td>QCD Background</td>
<td>35</td>
<td>105</td>
</tr>
<tr>
<td>Total Expected</td>
<td>896</td>
<td>1325</td>
</tr>
<tr>
<td>Data observed</td>
<td>935</td>
<td>1396</td>
</tr>
<tr>
<td>Z', $m = 500$ GeV</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>g_{KK}, $m = 700$ GeV</td>
<td>68</td>
<td>93</td>
</tr>
</tbody>
</table>
Data / Background Expectation

ATLAS Preliminary
$\int L dt = 200 \text{pb}^{-1}$

Events / GeV

Events / 25 GeV

Events / 20 GeV

08/10/2011 Venkat Kaushik DPF 2011 14
Systematic Uncertainties

• Systematic uncertainties affecting the shape of ttbar invariant mass
 ▪ b-tagging efficiency (11 %)
 ▪ Jet energy scale and resolution and pileup effects (9 %)
 ▪ Electron energy scale and resolution
 ▪ Muon momentum scale and resolution
 ▪ W+jets, ttbar, singletop, diboson shape and normalization
 ▪ QCD normalization
 ▪ PDF uncertainties, Parton shower and hadronization model

• Systematic uncertainties affecting normalization
 ▪ Luminosity
 ▪ Trigger and object reconstruction efficiencies
Limits - I

- Use reconstructed $m(tt)$ to search for evidence of new physics
 - Null hypothesis: Data consistent with SM prediction
 - If so, set limits on max allowed cross-section for BSM processes for benchmark scenarios: function of $m(tt)$

- Statistical Approach: Bayesian
 - Define a likelihood function for each bin of $m(tt)$
 - Overall likelihood is product of all (including channels)
 - Calculate posterior probability density using Bayes theorem
 - Assume flat (or zero) prior for $\sigma \geq 0$ ($\sigma < 0$)
• Step 1: Test Null Hypothesis
 ▪ BumpHunter tool (G. Choudalakis dijet final states)
• Step 2: Set upper limits
 ▪ Upper limit is identified as 95% point of the posterior probability
 ▪ For including systematics – generate pseudo-experiments (5000 expts) and vary the Poisson mean in every bin subject to systematic uncertainties according to a Gaussian.
 ▪ Expected limits (based on MC expectation)
 ▪ Observed limits (based on Data)
• 95% C.L Upper Limits \(\sigma \times BR(Z' \rightarrow t\bar{t}) \)
 • Observed 38 pb to 3.2 pb
 • Expected 20 pb to 2.2 pb

• 95% C.L Upper Limits \(\sigma \times BR(g_{KK} \rightarrow t\bar{t}) \)
 • Observed 32 pb to 6.6 pb
 • Expected 24 pb to 2.9 pb
Summary

• Many BSM models predict existence of new resonances that decay into top quark pairs
 ▪ TopColor Z’ and RS g_{KK} scenarios chosen for study
• 200 pb$^{-1}$ of data is analyzed
 ▪ ttbar invariant mass spectrum is reconstructed
 ▪ different reconstruction schemes compared
 ▪ Linearity and Resolution
 ▪ SM Background estimate using simulation
 ▪ QCD, W+jets estimate using data-driven approach
 ▪ Data and MC agreement consistent with SM prediction
 ▪ Limit set on cross-section x BR as a function of ttbar invariant mass
 ▪ Able to probe a ~ pb range for masses up to 1 TeV
BACKUP SLIDES
Systematic Uncertainties -II

<table>
<thead>
<tr>
<th>Source</th>
<th>Top</th>
<th>W+jets</th>
<th>Other</th>
<th>$Z', m_Z' = 500$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet energy scale</td>
<td>+13%</td>
<td>+26%</td>
<td>+15%</td>
<td>+14%</td>
</tr>
<tr>
<td></td>
<td>-7.5%</td>
<td>-18%</td>
<td>-8.7%</td>
<td>-8.1%</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>+12%</td>
<td>+20%</td>
<td>+36%</td>
<td>+14%</td>
</tr>
<tr>
<td>Jet reconstruction efficiency</td>
<td>-3.9%</td>
<td>-6.4%</td>
<td>-9.2%</td>
<td>-3.9%</td>
</tr>
<tr>
<td>b-jet energy scale</td>
<td>+5.3%</td>
<td>+4.6%</td>
<td>+2.2%</td>
<td>+5.3%</td>
</tr>
<tr>
<td></td>
<td>+3.5%</td>
<td>+2.6%</td>
<td>+6.8%</td>
<td>+3.4%</td>
</tr>
<tr>
<td>b-tagging efficiency (incl. mistag rate)</td>
<td>+20%</td>
<td>+46%</td>
<td>+34%</td>
<td>+21%</td>
</tr>
<tr>
<td></td>
<td>-18%</td>
<td>-41%</td>
<td>-34%</td>
<td>-19%</td>
</tr>
<tr>
<td>Top quark mass</td>
<td>+3.3%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-5.0%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$m_{t\bar{t}}$ Shape</td>
<td>±4.0%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parton shower & Fragmentation</td>
<td>±5.8%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Final-state radiation (FSR)</td>
<td>+7.2%</td>
<td>-</td>
<td>-</td>
<td>+6.3%</td>
</tr>
<tr>
<td></td>
<td>-7.6%</td>
<td>-</td>
<td>-</td>
<td>-3.2%</td>
</tr>
<tr>
<td>Initial-state radiation (ISR)</td>
<td>+4.3%</td>
<td>-</td>
<td>-</td>
<td>+3.6%</td>
</tr>
<tr>
<td></td>
<td>-8.2%</td>
<td>-</td>
<td>-</td>
<td>-1.2%</td>
</tr>
<tr>
<td>ISR+FSR</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+2.5%</td>
</tr>
<tr>
<td></td>
<td>-4.1%</td>
<td>-</td>
<td>-</td>
<td>-4.2%</td>
</tr>
</tbody>
</table>