

Search for tt resonances with

ATLAS Detector

Venkat Kaushik on behalf of ATLAS Collaboration University of Arizona Division of Particles and Fields of APS Aug 10 2011

ATLAS-CONF-2011-087 http://cdsweb.cern.ch/record/1351495?

Outline

- Physics Motivation
- Logistics
- Data/MC Samples, Selection Criteria
- Mass Reconstruction Methods
- QCD Background Estimate
- Data / MC Comparison
- Systematic Uncertainties
- Limits

Physics Motivation

- Top is the heaviest of known elementary particles
- Top resonances are predicted by several models
 - Sequential heavy Z' [narrow, Γ=0.03M]
 - SM Z boson-like [except mass which is a free parameter]
 - <u>Topcolor Z'_t [narrow, Γ =1.2%M but large $\sigma \times BR$]</u>
 - Z' couples strongly to 3rd generation quarks, with no coupling to leptons [leptophobic scenario]
 - Randall-Sundrum (RS) graviton G* [narrow, Γ < 0.01M]</p>
 - Only G* is allowed to propagate in extra-dimensions
 - resonance mass and coupling strength are free parameters
 - Kaluza-Klein gluon g_{kk} in RS models [wide]

Benchmark Scenarios

- Topcolor Z' (narrow)
 - Chosen based on current experimental sensitivity
 - Leptophobic <u>Model IV</u> (f1 = 1, f2 = 0), Γ = 1.2% M_{Z'}
- Kaluza-Klein gluon (wide) from <u>RS Models</u>
 - Strong coupling to top quark (g_L = 1.0, g_R = 4.0)
 - KK gluon primarily decays into top pairs
 - Signal can be interpreted as evidence of extra dimensions
- Previous Searches
 - CDF and DØ exclude masses below m = 900, 820 GeV
 - CMS (recent result in Moriond 2011)

08/10/2011

Top Pair: Semi-leptonic Final State

1 lepton [electron or muon] no tau

missing transverse energy

1 jet from leptonic top

3 jets from hadronic top, at least one b-tagged jet

+ additional jets from ISR/FSR

- Select good high pT lepton
- Large missing transverse energy
- \circ Four (or more) good jets
- $_{\odot}$ At least one of the jets identified as a b-jet
- Reconstruct ttbar invariant mass [Mass reconstruction methods]

Dataset / Triggers

- Using 200 pb⁻¹ of collider data in 2011 by LHC
 - Corresponds to data collected with all ATLAS subsystems operational and stable beam conditions
 - Uncertainty on luminosity (2010 estimate of 4.5%)
- Single lepton triggers used
 - Electron (threshold of 20 GeV) plateau at 25 GeV
 - Muon (threshold of 18 GeV) plateau at 20 GeV

Simulation - Signal

- Resonance Signal [Z' \rightarrow ttbar]
 - TopColor [Pythia]

Mass [GeV]	400	500	600	700	800	900	1000
σ×BR (pb)	37.8	20.5	10.0	5.0	2.8	1.6	1.0

RS G* [Pythia] k/M_{Pl} = 0.1

Mass [GeV]	500	600	700	800	900	1000	1300
σ×BR (pb)	6.32	3.14	1.53	0.77	0.39	0.21	0.004

KK gluons from RS models [MADGRAPH + Pythia]

Mass [GeV]	500	700	1000	1500
σ×BR (pb)	56	17	3.4	0.4

- QBH (t, anti-t) [BLACKMAX]
 - N = 6 extra dimensions, simplest 2 body final state
 - M_{threshold} = 0.75 (24% tt), 2.5 (38% tt) TeV

Simulation – EW Background

- ttbar [MC@NLO + Herwig/Jimmy]
 - 80.2 pb @ 7 TeV, KF=1.11
- EW single-top
 - s- (1.4 pb) and t- (21.5 pb) channels, Wt (14.6 pb)
- W+jets, Z+jets [Alpgen + Herwig/Jimmy]
 - 0-4Np exclusive, >=5Np inclusive KF=1.22 for all
- Diboson (Herwig + Jimmy)
 - WW (11.75 x 1.52), WZ (3.43 x 1.58), ZZ (0.98 x 1.2) [pb]

Event/Object Selection Criteria

- Isolated lepton with high transverse momentum
 - Electron [p_T > 25 GeV], Muon [p_T > 20 GeV]
- Missing Transverse Energy (MET)
 - Lepton+MET transverse mass > 25 GeV
 - MET > 35 GeV
- Jets [pT > 25 GeV]
 - Four (or more) calibrated jets, Anti-Kt (0.4 radius)
- B-tag used identify b quark from top decay
 - Secondary vertex tagger with 50% b-jet identification efficiency and good rejection rate for light jets

QCD Background

- Data-driven estimate for QCD background estimate
 - Jet Electron / Anti-electron methods
 - Jet triggered sample, require highly EM jet with associated tracks – to model the fake electron
 - Electron triggered sample, electron fails quality requirement
- Templates are fitted to selected data in to obtain the QCD fractions.

Mass Reconstruction Methods - I

- Four hardest Jets [Simple method]
 - 4 highest pT jets assumed to come from ttbar decay
 - Solve for neutrino longitudinal momentum
 - Choose smaller of the two solutions
 - Impose W-boson mass constraint
 - Ensure discriminant of quadratic equation is null

Mass Reconstruction Methods - II

- dRmin method [Reduce tails in mass spectrum]
 - Attempts to reduce long non-gaussian tails in mass resolution which is dominated by ISR/FSR
 - Among 4 leading good-jets, remove a jet that is close to a lepton or a jet satisfying $\Delta R_{\min} > 2.5 - 0.015m_i$

Event Yields – Data/MC

	Electron channel	Muon channel
tī	724	988
Single top	36	50
W+jets	93	172
Z+jets	6	8
Diboson	2	2
Total MC Background	861	1220
QCD Background	35	105
Total Expected	896	1325
Data observed	935	1396
$Z', m = 500 {\rm GeV}$	15	21
$g_{KK}, m = 700 \text{ GeV}$	68	93

Data / Background Expectation

08/10/2011

Venkat Kaushik

Systematic Uncertainties

- Systematic uncertainties <u>affecting the shape</u> of ttbar invariant mass
 - b-tagging efficiency (11 %)
 - Jet energy scale and resolution and pileup effects (9 %)
 - Electron energy scale and resolution
 - Muon momentum scale and resolution
 - W+jets, ttbar, singletop, diboson shape and normalization
 - QCD normalization
 - PDF uncertainties, Parton shower and hadronization model
- Systematic uncertainties <u>affecting normalization</u>
 - Luminosity
 - Trigger and object reconstruction efficiencies

Limits - I

- Use reconstructed m(tt) to search for evidence of new physics
 - Null hypothesis: Data consistent with SM prediction
 - If so, set limits on max allowed cross-section for BSM processes for benchmark scenarios: function of m(tt)
- Statistical Approach: Bayesian
 - Define a likelihood function for each bin of m(tt)
 - Overall likelihood is product of all (including channels)
 - Calculate posterior probability density using Bayes theorem
 - Assume flat (or zero) prior for $\sigma \ge 0$ ($\sigma < 0$)

08/10/2011

Limits - II

- Step 1: Test Null Hypothesis
 - BumpHunter tool (G. Choudalakis <u>dijet final states</u>)
- Step 2: Set upper limits
 - Upper limit is identified as 95% point of the posterior probability
 - For including systematics generate pseudoexperiments (5000 expts) and vary the Poisson mean in every bin subject to systematic uncertainties according to a Gaussian.
 - Expected limits (based on MC expectation)
 - Observed limits (based on Data)

Results

- 95% C.L Upper Limits $\sigma \times BR(Z' \rightarrow t\bar{t})$
- Observed 38 pb to 3.2 pb
- Expected 20 pb to 2.2 pb

• 95% C.L Upper Limits $\sigma \times BR(g_{KK} \rightarrow t\bar{t})$

- Observed 32 pb to 6.6 pb
- Expected 24 pb to 2.9 pb

08/10/20)11
----------	-----

Summary

- Many BSM models predict existence of new resonances that decay into top quark pairs
 - TopColor Z' and RS g_{KK} scenarios chosen for study
- 200 pb⁻¹ of data is analyzed
 - ttbar invariant mass spectrum is reconstructed
 - different reconstruction schemes compared
 - Linearity and Resolution
 - SM Background estimate using simulation
 - QCD, W+jets estimate using data-driven approach
 - Data and MC agreement consistent with SM prediction
 - Limit set on cross-section x BR as a function of ttbar invariant mass
 - Able to probe a ~ pb range for masses up to 1 TeV

BACKUP SLIDES

08/10/2011

Venkat Kaushik

DPF 2011

Systematic Uncertainties -II

Source	Тор	W+jets	Other	$Z', m_{Z'} = 500 \text{GeV}$
Jet energy scale	+13%	+26%	+15%	+14%
	-7.5%	-18%	-8.7%	-8.1%
Jet energy resolution	+12%	+20%	+36%	+14%
Jet reconstruction efficiency	-3.9%	-6.4%	-9.2%	-3.9%
b-jet energy scale	+5.3%	+4.6%	+2.2%	+5.3%
	+3.5%	+2.6%	+6.8%	+3.4%
b-tagging efficiency	+20%	+46%	+34%	+21%
(incl. mistag rate)	-18%	-41%	-34%	-19%
Top quark mass	+3.3%	-	-	-
	-5.0%	-	-	-
$m_{t\bar{t}}$ Shape	±4.0%	-	-	-
Parton shower & Fragmentation	±5.8%	-	-	-
Final-state radiation (FSR)	+7.2%	-	-	+6.3%
	-7.6%	-	-	-3.2%
Initial-state radiation (ISR)	+4.3%	-	-	+3.6%
	-8.2%	-	-	-1.2%
ISR+FSR	-	-	-	+2.5%
	-4.1%	-	-	-4.2%