

Studies with onia at LHCb

Luigi Li Gioi - for the LHCb collaboration

CNRS/IN2P3 - Laboratoire de Physique Corpusculaire de Clermont Ferrand

Meeting of the division of Particle and Fields of the American Physics Society Providence, 9th August 2011

Outline

LHCb results of production of $c\bar{c}$ and $b\bar{b}$ states and comparison with theoretical models Few results from exotic states

- $\psi(2S)$ production cross section
- Y(1S) production cross section
- \bullet $\chi_{_{\rm C2}}$ and $\chi_{_{\rm C1}}$ cross section ratio
- $\bullet \chi_{h}$ observation
- X(3872) mass measurement
- X(3872) production cross section
- Search of X(4140)
- Exclusive dimuon production

2010 LHCb integrated luminosity

Most of the analysis based on 2010 data = 35 pb⁻¹ 564 pb⁻¹ recorded so far

LHCb detector

Forward region spectrometer (1.9 < η < 4.9), 4% solid angle, 40% b-hadron cross section

$\psi(2S)$ production cross section (I)

LHCb-CONF-2011-026

- Two decay modes: $\psi(2S) \rightarrow J/\psi \pi \pi$, $\psi(2S) \rightarrow \mu \mu$
- Data include also $\psi(2S)$ from b: from 10% (low PT) to 40% (high PT)

$$\frac{d\sigma}{dp_T}(p_T) = \frac{N_{\psi(2S)}(p_T)}{\mathcal{L}_{int} \; \epsilon(p_T) \; \mathcal{B}(\psi(2S) \to J/\psi \pi^+ \pi^-) \; \mathcal{B}(J/\psi \to \mu^+ \mu^-) \; \Delta p_T}$$

Unknown polarization

$$\sigma(3 < p_T \le 16 \ GeV/c, 2 < y \le 4.5) = 0.62 \pm 0.04 \pm 0.12^{+0.07}_{-0.14} \ \mu b$$

$\psi(2S)$ production cross section (II)

$$\frac{d^2\sigma}{dp_T dy}(p_T, y) = \frac{N_{\psi(2S)}(p_T, y)}{\mathcal{L}_{int} \epsilon(p_T, y) \mathcal{B}(\psi(2S) \to e^+e^-) \Delta p_T \Delta y}$$

- Lepton universality assumed
- Smaller error respect to $B(\psi(2S) \rightarrow \mu \mu)$

 $\sigma(\text{inclusive } \psi(2S); 0 < p_{\text{T}} \leq 12 \text{ GeV}/c, 2 < y \leq 4.5) = 1.88 \pm 0.02 \pm 0.31^{+0.25}_{-0.48} \ \mu\text{b}$

Unknown polarization

Good agreement with NLO: CSM + COM

Theory predictions: Y.Q Ma, K. Wang and K. T. Chao, B. Kniehl, M. Butenschoen

DPF-2011 Luigi Li Gioi

Y(1S) production cross section (I)

LHCb-CONF-2011-016

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d} p_{\mathrm{T}} \mathrm{d} y} = \frac{N(\Upsilon(1S) \to \mu^+ \mu^-)}{\mathcal{L} \times \varepsilon \times \mathcal{B} (\Upsilon(1S) \to \mu^+ \mu^-) \times \Delta y \times \Delta p_{\mathrm{T}}}$$

9000

Result of Y(1S)

1000

Cross section of Y(2S) and Y(3S) soon

9500

 $M(\mu^{-}\mu^{+})$ (MeV/c²)

$$\sigma(pp \rightarrow \Upsilon(1S)X; 0 < p_T < 15 \text{ GeV}/c, 2 < y < 4.5) = 108.3 \pm 0.7^{+30.9}_{-25.8} \text{ nb}$$

10000 10500 11000 11500

Unknown polarization and luminosity uncertainty

Y(1S) production cross section (II)

Comparison with theory (P. Artoisenet, K.T. Chao, J.P. Lansberg and R. Vogt)

Comparison with CMS results (arXiv:1012.5545)

χ_{c2} and χ_{c1} cross section ratio (I)

LHCb-CONF-2011-020

$$\frac{\sigma(\chi_{c2})}{\sigma(\chi_{c1})} = \frac{N_{\chi c2}}{N_{\chi c1}} \cdot \frac{\epsilon_{J/\psi}^{\chi c1} \epsilon_{\gamma}^{\chi c1} \epsilon_{sel}^{\chi c1}}{\epsilon_{J/\psi}^{\chi c2} \epsilon_{\gamma}^{\chi c2} \epsilon_{sel}^{\chi c2}} \cdot \frac{Br(\chi_{c1} \to J/\psi \gamma)}{Br(\chi_{c2} \to J/\psi \gamma)}$$

- $N(\chi_c i)$: from fit on data sample
- Efficiencies (ε): from Monte Carlo
 - $\epsilon_{\rm J/\psi}^{\rm \chi c}$ is the total detection efficiency for J/ ψ from $\chi_{\rm c}$
 - $\begin{tabular}{ll} & \begin{tabular}{ll} & \begin{tabular}{ll}$

Photons recontruction:

- Unconverted photons
- Converted photons $(\gamma \to e^+e^-)$ after the magnet are identified by requiring a signal in the Scintillating Pad Detector (SPD). We cannot reconstruct converted photons before the magnet.
- Particle identification using a "confidence level likelihood"
 - Calorimeter information
 - Tracking information
 - Ratio of track seed energy to ECAL cluster energy

LHCb calorimeter

$\chi_{_{C2}}$ and $\chi_{_{C1}}$ cross section ratio (II)

- Data sample separated in converted (after the magnet) and non converted photons. Extraction From each sub-sample of N(χ_{ci}) from a fit in M(J/ ψ γ) M(J/ ψ) in bin of J/ ψ P_T
- Combination of the two results
- Evaluate the largest uncertainty due to the unknown polarization on the combined results

χ_{c2} and χ_{c1} cross section ratio (III)

- Result in bins of J/ψ PT
- NLO NRQCD: same model used for the $\psi(2S)$ analysis
- Results: statistical and statistical + systematic errors
- Shaded black area: uncertainty due to the unknown polarization
- Some differences respect to the theory predictions: Kuang-Ta Chao, Lucian Harland-Lang

$\chi_{_{b}}$ observation

- \bullet χ_{h} reconstructed from Y(1S) and a photon
- \bullet Clear signal. The 3 $\chi_{_h}$ states cannot be resolved
- Plan to measure cross section

X(3872) mass measurement (I)

- Exotic meson, internal structure unclear
- Most X of prompt. The b fraction is 8 ± 3 (stat) %

LHCb-CONF-2011-021

Momentum scale

- Accounts effects related imperfections in the knowledge of the magnetic field map and of the alignment of the tracking system
- Average overall scale factor to be applied on all raw measurements of the track momenta
- Detailed studies with J/ψ and other resonances
 - Stability versus time
 - Variation with decay kinematics
 - **→** Calibration checked with $\psi(2S) \rightarrow J/\psi \, \pi^+\pi^-$ decay: $\psi(2S) \rightarrow J/\psi \, \pi^+\pi^-$ mass becomes 3686.12±0.06(stat) MeV/c², in good agreement with the PDG value of 3686.09 ± 0.04 MeV/c²

Momentum scale checked on other two body decays

Decay	Measured mass $[MeV/c^2]$	PDG average $[MeV/c^2]$
$\Upsilon(1S) \to \mu^+\mu^-$	9459.90 ± 0.54	9460.30 ± 0.26
$J/\psi \rightarrow \mu^+\mu^-$	3096.97 ± 0.01	3096.916 ± 0.011
$D^0 \to K^-\pi^+$	1864.75 ± 0.07	1864.83 ± 0.14
$K_{ m S}^0 ightarrow \pi^+\pi^-$	497.62 ± 0.01	497.61 ± 0.02

J/ψ mass stable in all 2010

DPF-2011 Luigi Li Gioi 1

X(3872) mass measurement (II)

Unbinned maximum likelihood fit to M(J/ $\psi \pi^+\pi^-$)

- \bullet $\psi(2S)$ described by Breit-Wigner convolved with Gaussian (Voigt profile)
- X(3872) also described by Voigt, width fixed to 1.3 MeV (CDF average from BaBar and Belle limits)
- Background described by threshold function (gives good description of same sign background: $J/\psi \pi^{t}\pi^{t}$)

 $M_{X(3872)} = 3871.96 \pm 0.46 \text{ (stat)} \pm 0.10 \text{ (syst)} \text{ MeV/c}^2$

X(3872) production cross section

LHCb-CONF-2011-043

$$\sigma_{X(3872)} \times \mathcal{B}(X(3872) \to J/\psi \pi^+ \pi^-) = \frac{N_{X(3872)}^{corr}}{\mathcal{L}_{int} \times \eta_{tot} \times \mathcal{B}(J/\psi \to \mu^+ \mu^-)}$$

Source	Uncertainty (%)
X(3872) polarization	1.4
X(3872) decay model	negligible
X(3872) decay width	11.8
Mass resolution	1.3
Tracking efficiency	16
Track χ^2 cut	2
Trigger	5
Global event cuts	2.1
Vertex χ^2 cut	3
Muon identification	1.1
Integrated luminosity	3.5
$J/\psi \to \mu^+\mu^-$ branching fraction	1
Total	21.3

systematics

The yield efficiency corrected $~N_{X(3872)}^{corr}=9597\pm2217$

$$\sigma_{X(3872)} \times \mathcal{BR}(X(3872) \to J/\psi \pi^+ \pi^-) = 4.74 \pm 1.10(\text{stat}) \pm 1.01(\text{syst}) \text{ nb}$$

DPF-2011 Luigi Li Gioi 1

Search of X(4140) (I)

LHCb-CONF-2011-045

- Search of X(4140) in $B^+ \to J/\psi \phi K^+, \phi \to K^+ K^-$
- \bullet CDF observed a X(4140) structure with a significance of 5 σ
- If real these are candidates of exotic bound state

CDF: 115 ± 12 events in 6 fb⁻¹

Search of X(4140) (II)

Fit of M(J/ ψ ϕ) -M(J/ ψ)

- Signal: relativistic spin 0 Breit-Wigner smeared with the resolution
- Background: efficiency shaped 3 body phase space (smeared with the resolution), quadratic polynomial

$$\frac{B_r(B^+ \to X(4140)K^+, X(4140) \to J/\psi\phi)}{B_r(B^+ \to J/\psi\phi K^+)}$$

< 0.07 (90%CL) 3 body phase space < 0.04 (90%CL) quadratic polynomial

CDF: $0.149 \pm 0.039 \pm 0.024$

LHCb doesn't confirm X(4140)

arXiv:1101.6058v1

Exclusive dimuon (I)

γ p μ+ γ μ- ρ p

QCD can test prediction in a low multiplicity environment

 $M(\mu\mu) > 2.5 \text{ GeV/c}^2$, resonances removed

LHCb-CONF-2011-022

- Reconstruct of forward and backward tracks
- Exclusive = only 2 forward tracks in total

Exclusive dimuon (II)

 $P_{_T}\!(\mu\mu)\!\!<\!\!900$ MeV/c, two tracks, 1 photon for $\chi_{_{\! \rm C}}$

Result and theory predictions

- 1) $\sigma(QED)$: 67 ± 10 ± 5 ± 15 pb
- 2) $\sigma(J/\psi)$: 474 ± 12 ± 45 ± 92 pb
- 3) $\sigma(\psi(2S))$: 12.2 ±1.8 ±1.2 ± 2.4 pb
- 4) $\sigma(\psi(2S))/\sigma(J/\psi)$: 0.20 ± 0.03
- 5) $\sigma(\chi c0)$: 9.3 ± 2.2 ± 3.5 ± 1.8 pb
- 6) $\sigma(\chi c1)$: 16.4 ± 5.3 ± 5.8 ± 3.2 pb
- 7) $\sigma(\chi c2)$: 28.0 ± 5.4 ± 9.7 ± 5.4 pb

- 1) 42 pb (LPAIR)
- 2) 292 pb (Starlight) 330 pb (SuperChic) 330 pb (Motyka&Watt) 710 pb (Schafer&Szczurek)
- 3) 6.1 pb (Starlight) 17 pb (Schafer&Szczurek)

18

- 4) 0.16 (Starlight) 0.2 (Schafer&Szczurek)
- 0.166 ± 0.012 (**HERA**) 0.14 ± 0.05 (**CDF**)
- 5) 14 pb (SuperChic)
- 6) 10 pb (SuperChic)
- 7) 3 pb (SuperChic)

DPF-2011 Luigi Li Gioi

Summary

- LHCb performed many analysis of the quarkonium states using 2010 collected data
 - Good agreement of $\psi(2S)$ cross section measurement with NRQCD
 - These results are useful to test theoretical models
 - Good agreement of Y(1S) cross section
 - Some disagreement of χ_{c2} and χ_{c1} cross section ratio with theory models
 - Comparison of different exclusive dimuon production cross sections with theory predictions
- Results from X(...) states
 - → Precise measurement of X(3872) mass
 - → X(3872) production cross section measurement
 - LHCb doesn't confirm CDF X(4140)
- LHCb has a very high J/ψ statistic in 2011 data
 - → 564 pb⁻¹ recorded so far
 - → 1 fb⁻¹ expected in 2011
 - → A lot of new results expected in the future

Number of J/ψ in 2011 data

Backup slides

χ_{c2} , χ_{c1} : comparison with CDF results

X(3872) mass average

Average according to the prescriptions of PDG 2010

X(3872): mass measurement syst.

Signal Modeling

- Vary fit range
- Vary natural width from 0 2.6 MeV
- Embed MC in same-sign background and check for bias from background fit model Calibration
- Vary momentum scale by ± 0.1 per mille [quoted uncertainty]
- Parameterize residual η bias and make dependent scale factor
- Vary amount of material by 10 %

Alignment

- Drop TT hits and repeat procedure
- Scale track slopes in velo by per mille

Source of uncertainty	Value $[MeV/c^2]$
Mass fitting:	
Natural width	0.02
Background model	0.02
Fit range	0.01
Momentum calibration:	
Average momentum scale	0.05
η dependence of momentum scale	0.03
Detector description:	
Energy loss correction	0.05
Detector alignment:	
Tracking stations (TT information)	0.05
Vertex detector (track slopes)	0.01
Quadratic sum	0.10

LHCb fit of X(4274)

49 ± 18 events expected from CDF results assuming the same efficiency of X(4140) from CDF

 $BR(B^+ \to X(4274)K^+, X(4274) \to J/\psi\phi) / BR(B^+ \to J/\psi\phi K^+) < 0.08 \quad (90\% \text{ C.L.})$