New Perspectives On Indirect Detection: DARK MATTER VERY Low-Mass Stars

ANDREW R. ZENTNER UNIVERSITY OF PITTSBURGH

PRD, 80, 063501 [ARXIV:0907.3448] & PRL SUBMITTED (2011)

Tuesday, August 9, 2011

OUTLINE

- 1. Dark Matter Particle Capture in the Sun and Stars
- 2. Effects of Dark Matter Self-Interactions on Indirect Signals from the Sun
- 3. Effects of Dark Matter on Stellar Structure

4. How Asymmetric Dark Matter (ADM) May Alter the Conditions for Stardom

HIGH-ENERGY NEUTRINOS FROM THE DM IN THE SUN

SILK ET AL. 1985, KRAUSS ET AL. 1986, GAISSER ET AL. 1986,...

DARK MATTER

RECENT LIMITS: ABBASI ET AL. 2009, LEADING TECHNIQUE FOR σ_{sd} competes for σ_{si}

HIGH-ENERGY NEUTRINOS FROM THE DM IN THE SUN

SILK ET AL. 1985, KRAUSS ET AL. 1986, GAISSER ET AL. 1986,...

DARK MATTER

RECENT LIMITS: ABBASI ET AL. 2009, LEADING TECHNIQUE FOR σ_{sd} competes for σ_{si}

TWO EQUATIONS

• Standard wimp capture rates of dark matter in stars:

$$C_{\rm DM} \propto \rho_{\rm DM} \sigma_{\rm DM-N} \frac{v_{\rm esc}^2}{v_{\infty}} M_{\star} \sim 10^{22} \,\mathrm{s}^{-1}$$

• Annihilation rate of dark matter in stars: $C_{\text{ANN}} = \frac{1}{2} C_{\text{DM}}$ (Equilibrated)

A SELF-INTERACTION CHANGES THE PICTURE

RELATIVE FLUX FROM SELF-CAPTURED DM

SELF-INTERACTIONS

• Consequence: A self-interaction can lead to an observable neutrino flux in Ice Cube, even when Direct Detection experiments place bounds on the DM-Nucleon cross section that would rule this out for a standard WIMP.

See Also: Koushiappas & Kamionkowski (2009) for similar conclusions due to non-trivial dark matter halo structure

ASYMMETRIC DARK MATTER

1. Not a thermal relic 2. Does not annihilate because of asymmetry between "particles" and "antiparticles": Accumulates in Stars 3. Relevant to low-mass dark matter ($M_x \leq$ 20 GeV) 4. Mass range relevant to DAMA/CoGeNT search "hints"

STELLAR STRUCTURE

The occasional interactions of orbiting dark matter in stars, cools the stellar core.

Low-Mass Stars As DM Labs

- For stars, M ∝ R: low-mass stars capture as much DM per unit mass as the Sun!
- 2. L ∝ M^{3.5} : Less energy needs to be moved around to dramatically alter the stellar structure
- Low-mass (≤ 0.1 M_☉) are just hot enough to fuse hydrogen and fusion rates are VERY sensitive to core temperature.

4. Astronomical observatories are just becoming capable of taking a census of low-mass stars!

LOW-MASS STARS

"Stars" are objects in hydrostatic equilibrium in which energy is provided by nuclear fusion.

"Brown Dwarfs" are objects insufficiently massive to ignite nuclear fusion in their cores they are supported by electron degeneracy at temperatures too cool for fusion.

CORE TEMPERATURE

[10⁶K] TEMPERATURE CORE

Tuesday, August 9, 2011

EVOLUTION

ADM & STARS

• Viable models of Asymmetric Dark Matter may cool the cores of low-mass stars such that they do not become stars at all

• Brown dwarfs will cool significantly more quickly in such models

• Forthcoming astronomical censuses of very lowmass stars may aid indirect DM identification efforts, stellar evolution may be altered by DM (and perhaps other applications...)

See Also: Iocco et al. (private communication, to be submitted) for related results in solar mass stars

THE CURRENT COSMIC ENERGY BUDGET

Dark Energy 23% 73%

Normal, "Baryonic" Matter

Dark Matter