Efficiency measurement of b-tagging algorithms

Saptaparna Bhattacharya for the CMS collaboration

Brown University, DPF 2011

August 10, 2011

Introduction

B-Tagging Algorithms

p_{Trel} method

"System 8"

Measured b-tagging efficiencies

Systematic Uncertainties

Cross-checks with $t\bar{t}$ events

Estimation of mistag rate with Negative Taggers

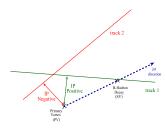
Conclusion

Properties of b-hadrons

- ▶ The lifetime \sim 1.5 ps (c τ = 450 μ m) for a momentum (p) of 20 GeV/c, with the corresponding decay length being \sim 1.8 mm.
- ▶ The high mass of \sim 4.2 GeV and a decay multiplicity of \sim 5 charged tracks.
- ▶ The decay kinematics, in particular the pseudo rapidity (η) .
- ▶ Hard b-fragmentation function : High p_T of decay products, relative to the flight direction of b-hadrons.
- ▶ The semi-leptonic decays, branching fraction of ~ 11 %, $\sim 20\%$ including cascade decays.

Procedure and Ingredients

Procedure:


- ▶ A variable (discriminator) which is sensitive to the flavor content of the jet is computed from the tracks associated with the jet.
- ▶ A working point is chosen. A loose operating point implies that 10% light quarks are included, while medium and tight require the inclusion of 1% and 0.1% light quarks respectively.

Ingredients:

- ▶ Jets: Reconstructed by the anti- k_T clustering method, with a cone radius parameter of ΔR =0.5, where R is defined in terms of intervals in azimuthal angle ϕ and pseudorapidity η as $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$.
- Charged particle tracks: High quality tracks reconstructed with a Kalman Filter based method.
- ▶ Primary Vertex: Reconstructed from tracks compatible with beam spot using the Adaptive Vertex Fitter algorithm.

Lifetime based Taggers

- Lifetime based taggers rely on tracks with large impact parameters or on the presence of a reconstructed secondary vertex within a jet.
- Impact parameter: 2D or 3D distance between the track and the vertex at the point of closest approach.
- ► The impact parameter taggers are : Track Counting (TC) and Jet Probability (JP).
- The secondary vertex based taggers: Simple Secondary Vertex (SSV), based on the reconstruction of at least one secondary vertex.
- ▶ High Efficiency and high purity versions of the taggers exist.

Efficiency measurement from muon-jet events : p_{Trel} method

- Due to the high b quark mass, p_T^{rel} is larger for muons from b-hadron decays.
- From the p_{Trel} spectra of b and non-b (c + light flavor jets), one may extract their fractions (f_b^{tag} , f_b^{untag}) with a maximum likelihood fit.
- ▶ The fractions and the total yields $(N_{data}^{tag}, N_{data}^{untag})$ are used to calculate the efficiency: $\varepsilon_b^{tag} = \frac{f_b^{tag}, N_{data}^{tag}}{f_b^{tag}, N_{data}^{tag} + f_b^{untag}, N_{data}^{untag}}$

Figure: p_T^{rel} is defined as the transverse momentum of the muon with respect to the jet direction.

P_{Trel} method

Figure: Fits of the muon p_{Trel} distributions to b and light flavor templates for jets containing muons that (top row) pass or (bottom row) fail the b-tagging algorithm: SSVHPT (Simple Secondary Vertex High Purity Tight OP).

"System 8"

- Applied to a sample of muon jet events.
- A system of 8 non-linear equations are set up and solved using numerical methods.
- Two data samples are used:
 - The muon jet+ away-jet sample: Contains two reconstructed jets and a muon within $\Delta R < 0.4$ of one of the jets. The highest p_T muon is taken when there exist more muons in the jet.
 - ► The muon jet+tagged-away-jet sample: This sample is created by tagging a b quark in the away jet. Since b quarks are produced in pairs a b quark can be tagged in the same event in another jet.

"System 8": Implementation

▶ The first 2 equations, hence are:

$$n = n_b + n_{cl} \tag{1}$$

$$p = p_b + p_{cl} \tag{2}$$

- (n, p) are the muon-in-jets in each sample.
- Taggers used: Two different taggers have been used: A test tagger ("tag") and a p_{Trel} selection.
- ▶ Hence the next set of equations are:

$$n^{tag} = \varepsilon_b^{tag} n_b + \varepsilon_{cl}^{tag} n_{cl} \tag{3}$$

$$p^{tag} = \beta_{12} \varepsilon_b^{tag} p_b + \alpha_{12} \varepsilon_{cl}^{tag} p_{cl}$$
 (4)

 $ightharpoonup (n^{tag}, p^{tag})$ are lifetime tagged.

"System 8 : Equations"

$$n^{p_{Trel}} = \varepsilon_b^{p_{Trel}} n_b + \varepsilon_{cl}^{p_{Trel}} n_{cl} \tag{5}$$

$$p^{p_{Trel}} = \beta_{23} \varepsilon_b^{p_{Trel}} p_b + \alpha_{23} \varepsilon_{cl}^{p_{Trel}} p_{cl}$$
 (6)

 $(n^{p_{Trel}}, p^{p_{Trel}})$ are obtained by applying a p_{Trel} selection.

$$n^{tag,p_{Trel}} = \beta_{13}\varepsilon_b^{tag}\varepsilon_b^{p_{Trel}}n_b + \alpha_{13}\varepsilon_{cl}^{tag}\varepsilon_{cl}^{p_{Trel}}n_{cl}$$
 (7)

$$p^{tag,p_{Trel}} = \beta_{123} \varepsilon_b^{tag} \varepsilon_b^{p_{Trel}} p_b + \alpha_{123} \varepsilon_{cl}^{tag} \varepsilon_{cl}^{p_{Trel}} p_{cl}$$
 (8)

- ► The last set of equations are a result of the application of both tags.
- ▶ The correlation factors are $(\alpha_{12}, \beta_{12}, \alpha_{23}, \beta_{23}, \alpha_{13}, \beta_{13}, \alpha_{123}, \beta_{123})$ obtained from simulations.
- \triangleright α_{13}, β_{13} are defined as:

$$\beta_{13} = \frac{\varepsilon_b^{tag, p_{Trel}}}{\varepsilon_b^{tag} \varepsilon_b^{p_{Trel}}} \quad \alpha_{13} = \frac{\varepsilon_{cl}^{tag, p_{Trel}}}{\varepsilon_{cl}^{tag} \varepsilon_{cl}^{p_{Trel}}} \tag{9}$$

► The other correlation factors are defined similarly.

Measured b-tagging efficiencies

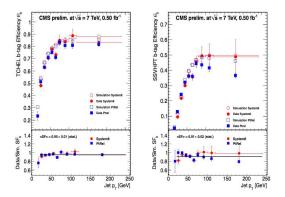


Figure: b-tagging for the TCHEL (left panel) and SSVHPT (right panel) taggers as a function of muon-jet p_T . Both lower panels show data/MC scale factors.

b-tagging efficiencies

Measured b-tagging efficiencies and data/MC scale factors for several b-tagging algorithms. Uncertainties are statistical for ϵ_b^{tag} and statistical+systematic for SF_b .

b-tagger 50-80 GeV/c	ϵ_b^{tag} PtRel	<i>SF</i> ^{tag} Ptrel	ϵ_b^{tag} System8	<i>SF</i> _b ^{tag} System8
JPL TCHEL TCHEM TCHPM SSVHEM SSVHPT TCHPT	$\begin{array}{c} 0.82 \pm 0.01 \\ 0.76 \pm 0.01 \\ 0.63 \pm 0.01 \\ 0.48 \pm 0.01 \\ 0.62 \pm 0.01 \\ 0.38 \pm 0.01 \\ 0.36 \pm 0.01 \end{array}$	$\begin{array}{c} 0.97\pm0.01\pm0.05\\ 0.95\pm0.01\pm0.05\\ 0.93\pm0.02\pm0.06\\ 0.92\pm0.02\pm0.05\\ 0.95\pm0.02\pm0.07\\ 0.89\pm0.02\pm0.06\\ 0.88\pm0.02\pm0.05 \end{array}$	$\begin{array}{c} 0.85 \pm 0.02 \\ 0.77 \pm 0.01 \\ 0.63 \pm 0.02 \\ 0.49 \pm 0.01 \\ 0.60 \pm 0.01 \\ 0.37 \pm 0.01 \\ 0.37 \pm 0.01 \end{array}$	$\begin{array}{c} 1.00\pm0.02\pm0.07\\ 0.96\pm0.02\pm0.05\\ 0.93\pm0.02\pm0.07\\ 0.93\pm0.03\pm0.09\\ 0.94\pm0.02\pm0.06\\ 0.90\pm0.03\pm0.05\\ 0.88\pm0.03\pm0.07 \end{array}$

b-tagging efficiencies

Measured data/MC scale factors for several b-tagging algorithms in the overall jet p_T range from 20 to 240 GeV/c for pseudorapidity $|\eta| < 2.4$, $|\eta| < 1.2$, $1.2 < |\eta| < 2.4$. Uncertainties are statistical for ϵ_b^{tag} and statistical+systematic for SF_b . Both p_{Tel} and System8 provide values compatible with each other.

b-tagger	SF_b	SF_b	SF_b
20-240 GeV/c	$ \eta < 2.4$	$ \eta < 1.2$	$1.2 < \eta < 2.4$
JPL TCHEL TCHEM TCHPM SSVHEM SSVHPT TCHPT	$\begin{array}{c} 0.99 \pm 0.01 \pm 0.10 \\ 0.95 \pm 0.01 \pm 0.10 \\ 0.94 \pm 0.01 \pm 0.09 \\ 0.91 \pm 0.01 \pm 0.09 \\ 0.95 \pm 0.01 \pm 0.10 \\ 0.90 \pm 0.02 \pm 0.09 \\ 0.88 \pm 0.02 \pm 0.09 \\ \end{array}$	$\begin{array}{c} 0.99 \pm 0.01 \pm 0.10 \\ 0.95 \pm 0.01 \pm 0.10 \\ 0.94 \pm 0.01 \pm 0.09 \\ 0.91 \pm 0.02 \pm 0.09 \\ 0.95 \pm 0.01 \pm 0.10 \\ 0.89 \pm 0.02 \pm 0.09 \\ 0.88 \pm 0.02 \pm 0.09 \\ 0.88 \pm 0.02 \pm 0.09 \\ \end{array}$	$\begin{array}{c} 0.98 \pm 0.01 \pm 0.10 \\ 0.95 \pm 0.02 \pm 0.10 \\ 0.93 \pm 0.02 \pm 0.09 \\ 0.90 \pm 0.03 \pm 0.09 \\ 0.93 \pm 0.02 \pm 0.09 \\ 0.90 \pm 0.03 \pm 0.09 \\ 0.90 \pm 0.03 \pm 0.09 \\ 0.87 \pm 0.03 \pm 0.09 \\ \end{array}$

Systematic Uncertainties

- ▶ Pile-up: Systematic uncertainties are estimated by constructing 2 samples with high and low pileup regions.
- Away jet tagger: Dependency of the away-jet tagger.
- Muon p_T: Muon p_T cut is varied from its central value at 5 GeV to 7 and 10 GeV.
- ▶ Gluon splitting: Account for the error in mismodeling gluon to $b\bar{b}$.
- Closure test: The method was checked for self-consistency.
- $ightharpoonup p_{Trel}$ specific: Mismodeling of light jet p_{Trel} spectra.
- ▶ System8 specific: Selection of p_{Trel} cut and sample dependence.
- ▶ Average systematic uncertainty is between 6%-7%.

Systematic Uncertainties

Systematic uncertainties for the Ptrel (top) and System8 (bottom) methods.

	b-tagger	pile-up	away jet	muon p_T	light	$g o bar{b}$
-	JPL	0.2%	3.0%	2.3%	2.8%	0.3%
	TCHEM	2.4%	3.6%	1.5%	3.3%	0.2%
	TCHEM	0.9%	5.1%	1.5%	3.7%	0.1%
	TCHPM	1.8%	3.3%	2.6%	3.4%	0.4%
	SSVHEM	1.4%	5.8%	1.9%	3.4%	0.6%
	SSVHPT	1.1%	4.8%	2.8%	3.4%	0.6%
	TCHPT	0.6%	4.3%	2.3%	3.7%	0.3%

b-tagger	pile-up	away jet	muon p_T	p _{Trel}	g o bar b	sample
JPL	5.1%	1.3%	0.8%	2.2%	0.1%	3.8%
TCHEM	3.3%	2.4%	2.8%	0.9%	0.6%	1.9%
TCHEM	5.8%	2.6%	0.9%	2.0%	0.7%	2.4%
TCHPM	4.8%	3.9%	4.9%	1.7%	2.1%	4.0%
SSVHEM	3.5%	4.6%	0.4%	1.8%	0.2%	3.0%
SSVHPT	1.2%	2.9%	2.8%	2.4%	0.2%	3.0%
TCHPT	3.5%	3.1%	4.0%	2.8%	2.5%	2.5%

Cross-checks with $t\bar{t}$ events

- ▶ In the standard model, t decays to Wb at least 99.8% of the time.
- ▶ Defining $R_b = \left(\frac{B(t \to Wb)}{B(t \to Wq)}\right)$, where q is any down type quark.
- R_b, if assumed to be 1, can be used to extract the b tagging efficiency.
 - ▶ The Profile Likelihood Ratio method : With dilepton $t\bar{t}$ events.
 - ▶ The R_b method : With dilepton $t\bar{t}$ events.
 - ▶ The Flavor Tag Consistency Method : With lepton+jets $t\bar{t}$ events.
 - ▶ The Simultaneous Heavy Flavor and Top method : With lepton+jets $t\bar{t}$ events.
- ► All of these methods give efficiency values compatible with Ptrel and System8 methods.

Estimation of mistag rate with Negative Taggers

- ▶ The mis-tag rate is obtained from tracks with negative impact parameters or secondary vertices with negative decay lengths.
- ▶ The mis-tag rate is evaluated as: $\varepsilon_{data}^{mistag} = \varepsilon_{data}^{-}$, R^{light} , where ε_{data}^{-} is the negative tag rate in data and $R_{light} = \varepsilon_{MC}^{mistag}/\varepsilon_{MC}^{-}$ is the ratio between the light flavor mis-tag rate and negative tag rate of all jets in the simulation.

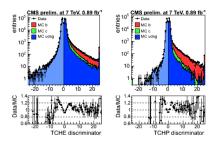


Figure: Signed *b*-tag discriminators in data (dots) and simulation of light flavor jets (blue), c-jets(green) and b-jets (red area) with a p_T threshold

Systematic Uncertainties

- ▶ b and c fractions: 1.9 %
- ► Gluon fraction: 0.2 %
- ▶ Long lived K_s^0 and Λ decays (displaced vertices) and photon conversion and nuclear interactions: 2.0%
- Mismeasured tracks: 0.3 %
- ► Sign flip: 4.3%
- ▶ Event sample (dominant systematic): 10%
- ▶ Pile up: 0.7%

Mistag rates

▶ Mistag rate and data/MC scale factor for different b-taggers with p_T between 50 and 80 GeV. The statistical+systematic uncertainties are quoted.

b-tagger	mistag rate	Scale Factor for light jets
JPL TCHEL TCHEM SSVHEM SSVHPT TCHPT	$\begin{array}{c} 0.077 \pm 0.001 \pm 0.016 \\ 0.128 \pm 0.001 \pm 0.026 \\ 0.0175 \pm 0.0003 \pm 0.0038 \\ 0.0144 \pm 0.0003 \pm 0.0029 \\ 0.0012 \pm 0.0001 \pm 0.0002 \\ 0.0017 \pm 0.0001 \pm 0.0004 \end{array}$	$\begin{array}{c} 0.98 \pm 0.01 \pm 0.11 \\ 1.11 \pm 0.01 \pm 0.12 \\ 1.21 \pm 0.02 \pm 0.17 \\ 0.91 \pm 0.02 \pm 0.15 \\ 0.93 \pm 0.09 \pm 0.12 \\ 1.21 \pm 0.10 \pm 0.18 \end{array}$

Conclusion

- ▶ Several methods have been used to obtain the tagging efficiency of b jets using an integrated luminosity of 0.50 to 0.89 fb⁻¹ collected by the CMS experiment in 2011.
- ▶ The data/MC scale factor is measured with an uncertainty of 10% for b jets with p_T upto 200 GeV/c.
- ▶ For light flavor jets with p_T upto 500 GeV the mistag rate is measured with an uncertainty of 10-20 %.
- ▶ Tagging efficiencies are cross checked with independent analyses using $t\bar{t}$ events.
- ▶ B tagging is of crucial importance in events with topologies involving b quarks. Single top being a glorious example!

References

For more information please look at CMS PAS BTV-11-001.

Estimation of mistag rate with Negative Taggers

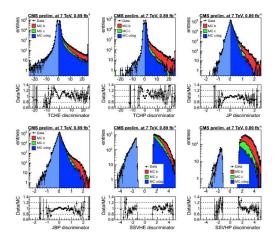


Figure: Signed *b*-tag discriminators in data (dots) and simulation of light flavor jets (blue), c-jets(green) and b-jets (red area) with a p_T threshold of 30 GeV/c