

Search for General Gauge Mediated SUSY Breaking with Photons

Duong Nguyen

Brown University

On behalf of the CMS collaboration

Meeting of Department of Particle and Field Providence, RI 8/8-8/15/2011

Introduction

- General Gauge-Mediation Supersymmetry
 - Neutralino is the next-to-lightest supersymmetric particle (bino, wino or higgsino)
 - Gravitino is the lightest particle.
 - Mass of strongly interacting SUSY partners can be light->large production production at LHC

Two photons + ME_T

Lepton+photon+ME_⊤

Event Selection

- \square Two photons + ME_T
 - \blacksquare 2 isolated photons with $E_T > 30$ GeV and $|\eta| < 1.379$
 - Require at least one jet (0.5-cone anti- k_{T} jet) with ET > 30 GeV and $|\eta|$ < 2.6
 - Jets are separated from both photon candidates by $\Delta R = 0.9$
- \square Lepton+photon+ME_T
 - Isolated electron or muon and isolated gamma, $\Delta R > 0.4$
 - Include EB and EE electron with p_T > 20 GeV
 - $\eta_{\text{muon}} < 2.1$
 - At least one good vertex and no jet requirement

Backgrounds

- \square Two photons+ME_T
 - \blacksquare QCD with fake ME_T: multijet production, photon+jet, diphotons
 - Electroweak with real MET: W(ev)+γ, W(e v)+jet
 - Irreducible backgrounds: Wyy, Zyy
- \square Lepton+photon+ME_T
 - Wgamma production
 - Instrument backgrounds with misidentified leptons and photons
 - Jet or electron misidentified as photons: W+jet, QCD multijet, Z and ttbar production
 - QCD with fake ME_T

Two photons+ME_T

QCD Backgrounds

- \square Model the ME_T using a data control sample containing 2 EM objects.
 - EM objects can be
 - Fake photons (identical to photons except fail showershape (sigmaIetaEta cut), may fail pixel match veto and good timing)
 - Electrons (identical to photons but have a matched pixel seed)
 - Reweight the model ME_T to take into account the kinematic differences between control and candidate samples. (the weight factors coming from comparing the p_T spectrum of di-EM system in control and candidate samples)
- \square Normalize the model ME_T to ME_T < 20 GeV in the candidate sample.

Electroweak Background with Real ME_T

- W+γ and W+jet contribute to the background if electrons is misidentified as photons.
- \square Model ME_T from egamma control sample.
- □ Reweight the ME_T using the probability of electron misidentified as photons, f_{e->qamma}=1.4±0.4%

MET Distribution of Two Photons + ME_T

- Good agreement
 between estimated
 background and
 observerd data
- □ Example GGM

Example GGM model: $m_{\tilde{g}} = 720 \text{ GeV}, m_{\tilde{q}} = 720 \text{ GeV}, m_{\tilde{\chi}_1^0} = 150 \text{ GeV}$

Туре	Number of	Stat	Reweight	Normalization
	events	error	error	error
$\gamma\gamma$ events	1			
Electroweak background estimate	0.04 ± 0.03	± 0.02	±0.0	±0.01
QCD background estimate (ff)	0.49 ± 0.37	± 0.36	±0.06	±0.07
QCD background estimate (ee)	1.67 ± 0.64	± 0.46	±0.38	±0.23
Total background (using ff)	0.53 ± 0.37			
Total background (using ee)	1.71 ± 0.64			
Combined total background	1.2 ± 0.8			
Expected from GGM sample point	8.0 ± 1.7			

Check Background Estimation

- Check to see if QCD background estimation method works?
- □ Reweight the di-electron ME_T spectrum by matching di-electron p_T spectrum to that of di-EM spectrum.
- Excess is observerd
 which is consistent with
 Wγ and W+jet MC

Limits on GGM Model

Upper 95%CL cross section limits for 150 GeV neutralino mass

95% CL exclusions limits

Lepton+photon+ME_T

Backgrounds (I)

- W->eν+γ, W->μν+γ
 - Estimated in MC simulation using MadGraph+Pythia
 - K-factor to correct for NLO effect.
 - NLO cross section obtained from WGRAD NLO Wgamma generator with CTEQ6.6 NLO PDF
 - K-factor in the range of 1.5-1.6 depending on photon E_T
- ☐ Instrument backgrounds:
 - Jet-> γ backgrounds:
 - Control sample: lepton+fakeable photon (from jet)
 - Weight the MET of control sample by jet->γ fake rate
 - Electron->γ backgrounds
 - Control sample: lepton+fakeable photon (from electron)
 - Weight the ME $_{\mathsf{T}}$ of control sample by electron-> γ fake rate

Background (II)

- □ Qcd background:
 - Di-electron samples as the control sample
 - Reweight events from control sample to produce candidate event lepton+gamma kinematics:
 - Reproduce the lepton+ γ transverse energy distribution
 - Lepton p_{T} is also reweighted to reproduce the transverse mass of lepton+ME_{\mathsf{T}}
 - Normalized the model ME_T at ME_T < 30 GeV in the control sample

ME_T Distribution of Candidate Sample

	No $E_{\mathrm{T}}^{\mathrm{miss}}$ selection	$E_{\mathrm{T}}^{\mathrm{miss}} > 40\mathrm{GeV}$	$E_{\mathrm{T}}^{\mathrm{miss}} > 100\mathrm{GeV}$
W_{γ}	44.5 ± 9.2	16.1 ± 3.4	1.68 ± 0.42
$jet \rightarrow \gamma$	20.3 ± 4.5	3.1 ± 0.9	0.02 ± 0.02
$\mathrm{e} ightarrow \gamma$	70.5 ± 19.1	0.3 ± 0.1	0.04 ± 0.03
QCD	134 ± 28	0.4 ± 0.2	0.00 ± 0.00
Total background	269 ± 18	19.9 ± 3.7	1.74 ± 0.43
data	264	16	
SUSY GMC prediction	3.94 ± 0.79	3.76 ± 0.75	2.79 ± 0.56

Lepton pT distributions

Limits

95% CL upper cross section limits

95% CL exclusion limits on squark/gluino mass and wino mass

Conclusions

- \square Searches for gauge-mediation SUSY scenario are performed in the two photons+ME $_{\top}$ and lepton+photon+ME $_{\top}$ channels
- No excess of events has been found in these channel and the most stringent exclusion limits to date are set for squark and gluino (two photons+ ME_T), squark, gluino and wino masses (lepton+photon+ ME_T).