Search for General Gauge Mediated SUSY Breaking with Photons Duong Nguyen **Brown University** On behalf of the CMS collaboration Meeting of Department of Particle and Field Providence, RI 8/8-8/15/2011 ### Introduction - General Gauge-Mediation Supersymmetry - Neutralino is the next-to-lightest supersymmetric particle (bino, wino or higgsino) - Gravitino is the lightest particle. - Mass of strongly interacting SUSY partners can be light->large production production at LHC Two photons + ME_T Lepton+photon+ME_⊤ #### **Event Selection** - \square Two photons + ME_T - \blacksquare 2 isolated photons with $E_T > 30$ GeV and $|\eta| < 1.379$ - Require at least one jet (0.5-cone anti- k_{T} jet) with ET > 30 GeV and $|\eta|$ < 2.6 - Jets are separated from both photon candidates by $\Delta R = 0.9$ - \square Lepton+photon+ME_T - Isolated electron or muon and isolated gamma, $\Delta R > 0.4$ - Include EB and EE electron with p_T > 20 GeV - $\eta_{\text{muon}} < 2.1$ - At least one good vertex and no jet requirement ### Backgrounds - \square Two photons+ME_T - \blacksquare QCD with fake ME_T: multijet production, photon+jet, diphotons - Electroweak with real MET: W(ev)+γ, W(e v)+jet - Irreducible backgrounds: Wyy, Zyy - \square Lepton+photon+ME_T - Wgamma production - Instrument backgrounds with misidentified leptons and photons - Jet or electron misidentified as photons: W+jet, QCD multijet, Z and ttbar production - QCD with fake ME_T ## **Two photons+ME**_T ### QCD Backgrounds - \square Model the ME_T using a data control sample containing 2 EM objects. - EM objects can be - Fake photons (identical to photons except fail showershape (sigmaIetaEta cut), may fail pixel match veto and good timing) - Electrons (identical to photons but have a matched pixel seed) - Reweight the model ME_T to take into account the kinematic differences between control and candidate samples. (the weight factors coming from comparing the p_T spectrum of di-EM system in control and candidate samples) - \square Normalize the model ME_T to ME_T < 20 GeV in the candidate sample. # Electroweak Background with Real ME_T - W+γ and W+jet contribute to the background if electrons is misidentified as photons. - \square Model ME_T from egamma control sample. - □ Reweight the ME_T using the probability of electron misidentified as photons, f_{e->qamma}=1.4±0.4% ### MET Distribution of Two Photons + ME_T - Good agreement between estimated background and observerd data - □ Example GGM Example GGM model: $m_{\tilde{g}} = 720 \text{ GeV}, m_{\tilde{q}} = 720 \text{ GeV}, m_{\tilde{\chi}_1^0} = 150 \text{ GeV}$ | Туре | Number of | Stat | Reweight | Normalization | |---------------------------------|-----------------|------------|----------|---------------| | | events | error | error | error | | $\gamma\gamma$ events | 1 | | | | | Electroweak background estimate | 0.04 ± 0.03 | ± 0.02 | ±0.0 | ±0.01 | | QCD background estimate (ff) | 0.49 ± 0.37 | ± 0.36 | ±0.06 | ±0.07 | | QCD background estimate (ee) | 1.67 ± 0.64 | ± 0.46 | ±0.38 | ±0.23 | | Total background (using ff) | 0.53 ± 0.37 | | | | | Total background (using ee) | 1.71 ± 0.64 | | | | | Combined total background | 1.2 ± 0.8 | | | | | Expected from GGM sample point | 8.0 ± 1.7 | | | | ### **Check Background Estimation** - Check to see if QCD background estimation method works? - □ Reweight the di-electron ME_T spectrum by matching di-electron p_T spectrum to that of di-EM spectrum. - Excess is observerd which is consistent with Wγ and W+jet MC ### Limits on GGM Model # Upper 95%CL cross section limits for 150 GeV neutralino mass 95% CL exclusions limits ## **Lepton+photon+ME**_T ### Backgrounds (I) - W->eν+γ, W->μν+γ - Estimated in MC simulation using MadGraph+Pythia - K-factor to correct for NLO effect. - NLO cross section obtained from WGRAD NLO Wgamma generator with CTEQ6.6 NLO PDF - K-factor in the range of 1.5-1.6 depending on photon E_T - ☐ Instrument backgrounds: - Jet-> γ backgrounds: - Control sample: lepton+fakeable photon (from jet) - Weight the MET of control sample by jet->γ fake rate - Electron->γ backgrounds - Control sample: lepton+fakeable photon (from electron) - Weight the ME $_{\mathsf{T}}$ of control sample by electron-> γ fake rate ### Background (II) - □ Qcd background: - Di-electron samples as the control sample - Reweight events from control sample to produce candidate event lepton+gamma kinematics: - Reproduce the lepton+ γ transverse energy distribution - Lepton p_{T} is also reweighted to reproduce the transverse mass of lepton+ME_{\mathsf{T}} - Normalized the model ME_T at ME_T < 30 GeV in the control sample ## ME_T Distribution of Candidate Sample | | No $E_{\mathrm{T}}^{\mathrm{miss}}$ selection | $E_{\mathrm{T}}^{\mathrm{miss}} > 40\mathrm{GeV}$ | $E_{\mathrm{T}}^{\mathrm{miss}} > 100\mathrm{GeV}$ | |--------------------------------|---|---|--| | W_{γ} | 44.5 ± 9.2 | 16.1 ± 3.4 | 1.68 ± 0.42 | | $jet \rightarrow \gamma$ | 20.3 ± 4.5 | 3.1 ± 0.9 | 0.02 ± 0.02 | | $\mathrm{e} ightarrow \gamma$ | 70.5 ± 19.1 | 0.3 ± 0.1 | 0.04 ± 0.03 | | QCD | 134 ± 28 | 0.4 ± 0.2 | 0.00 ± 0.00 | | Total background | 269 ± 18 | 19.9 ± 3.7 | 1.74 ± 0.43 | | data | 264 | 16 | | | SUSY GMC prediction | 3.94 ± 0.79 | 3.76 ± 0.75 | 2.79 ± 0.56 | # Lepton pT distributions ### Limits 95% CL upper cross section limits # 95% CL exclusion limits on squark/gluino mass and wino mass #### Conclusions - \square Searches for gauge-mediation SUSY scenario are performed in the two photons+ME $_{\top}$ and lepton+photon+ME $_{\top}$ channels - No excess of events has been found in these channel and the most stringent exclusion limits to date are set for squark and gluino (two photons+ ME_T), squark, gluino and wino masses (lepton+photon+ ME_T).